If \(\vec{a}=2 \hat{i}+5 \hat{j}+3 \hat{k}\) , \(\vec{b}=3 \hat{i}+3 \hat{j}+6 \hat{k}\) and \(\vec{c}=2 \hat{i}+7 \hat{j}+4 \hat{k}\), then \(|(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})|\) is

This question was previously asked in
Bihar Senior Secondary Teacher (Mathematics) Official Paper (Held On: 26 Aug, 2023 Shift 2)
View all Bihar Senior Secondary Teacher Papers >
  1. 10
  2. 20
  3. 70
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 5 : None of the above
Free
BPSC बिहार शिक्षक भर्ती : कैबिनेट मंत्री टेस्ट
28.2 K Users
25 Questions 25 Marks 20 Mins

Detailed Solution

Download Solution PDF

Explanation:

\(\vec{a}=2 \hat{i}+5 \hat{j}+3 \hat{k}\)\(\vec{b}=3 \hat{i}+3 \hat{j}+6 \hat{k}\)\(\vec{c}=2 \hat{i}+7 \hat{j}+4 \hat{k}\)

So, \(\vec a-\vec{b}=2 \hat{i}+5 \hat{j}+3 \hat{k}-(3 \hat{i}+3 \hat{j}+6 \hat{k})\) = \(-\hat{i}+2 \hat{j}-3 \hat{k}\)

and \(\vec c-\vec{a}=2 \hat{i}+7 \hat{j}+4 \hat{k}-(2 \hat{i}+5 \hat{j}+3 \hat{k})\) = \(2 \hat{j}+ \hat{k}\)

So, \((\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})\) = \(\begin{vmatrix}\hat i&\hat j&\hat k\\-1&2&-3\\0&2&1\end{vmatrix}\) = \(8\hat i+\hat j-2\hat k\) 

Hence, \(|(\vec{a}-\vec{b}) \times(\vec{c}-\vec{a})|\) = \(\sqrt{64+1+4}\) = \(\sqrt{69}\)

(5) is correct

Latest Bihar Senior Secondary Teacher Updates

Last updated on May 25, 2025

-> BPSC Senior Secondary Teacher, BPSC TRE 4.0 is to be conducted in August, 2025.

-> CTET/STET-qualified candidates can appear for the BPSC TRE 4.0.

-> The Bihar Senior Secondary Teacher eligibility is PG + B.Ed./ B.El.ED + STET Paper-2 Pass. 

-> The selection process includes a written exam. To boost your exam preparation, refer to the Bihar Senior Secondary Teacher Test Series.  

More Scalar and Vector Product Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti gold download apk teen patti wealth teen patti gold online