Vector or Cross Product MCQ Quiz - Objective Question with Answer for Vector or Cross Product - Download Free PDF
Last updated on May 2, 2025
Latest Vector or Cross Product MCQ Objective Questions
Vector or Cross Product Question 1:
What is 3α + 2β equal to if (2î + 6ĵ + 27k̂) × (î + αĵ + βk̂) is a null vector?
Answer (Detailed Solution Below)
Vector or Cross Product Question 1 Detailed Solution
Explanation:
Given:
⇒ (2î + 6ĵ + 27k̂) × (î + αĵ + βk̂) = 0
⇒ \(\begin{bmatrix} \hat{i} &\hat{j}&\hat{k}\\\ 2&6&27\\\ 1&α&β\end{bmatrix}\ \) = 0
⇒ \(\hat{i} (6β -27α) - \hat{j}(2β-27)+\hat{k}(2α-6) =0\)
Comparing both sides, we get
6β – 27α = 0
⇒ 2β = 9α
2β - 27 = 0
⇒ β = 27/2
Also
⇒ 2α – 6 = 0
α =3
Now,
3α + 2β = \(3\times 3 + 2 \times \frac{27}{2}\) =36
∴ Option (1) is correct
Vector or Cross Product Question 2:
The unit vector perpendicular to each of the vectors \(\rm \vec{a}+\vec{b}\) and \(\rm \vec{a}-\vec{b} \), where \(\rm \vec{a}=\hat{i}+\hat{j}+\hat{k}\) and \(\rm \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}\), is :
Answer (Detailed Solution Below)
Vector or Cross Product Question 2 Detailed Solution
Concept:
Vector Perpendicular to Both Vectors:
- We are given two vectors: a + b and a - b, and we need to find a vector perpendicular to both of them.
- The method to find a vector perpendicular to both given vectors is by taking their cross product. The result will be a vector perpendicular to both.
- Once the cross product is found, we normalize the result (i.e., divide it by its magnitude) to find the unit vector perpendicular to both vectors.
Calculation:
Given vectors:
a = i + j + k
b = i + 2j + 3k
The vectors we need to take the cross product of are:
a + b = (i + j + k) + (i + 2j + 3k) = 2i + 3j + 4k
a - b = (i + j + k) - (i + 2j + 3k) = 0i - j - 2k
Now, we compute the cross product of (a + b) and (a - b):
(a + b) × (a - b) =
\( \left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 0 & -1 & -2 \\ \end{array}\right| \)
Expanding the determinant:
Result of cross product:
(a + b) × (a - b) = -2i + 4j - 2k
Now, let's find the magnitude of the resulting vector:
Magnitude = √((-2)² + 4² + (-2)²) = √(4 + 16 + 4) = √24 = 2√6
To find the unit vector, we divide the result by its magnitude:
Unit vector = (-2i + 4j - 2k) / 2√6
The unit vector is:
Unit vector = (-1/√6)i + (2/√6)j - (1/√6)k
Hence Option 4 is the correct answer.
Vector or Cross Product Question 3:
If \(\theta\) is the angle between the vectors \(4\vec{i} - \vec{j} + 2\vec{k} \quad\) and \(\quad \vec{i} + 3\vec{j} - 2\vec{k},\) then \( \sin 2\theta =\)
Answer (Detailed Solution Below)
Vector or Cross Product Question 3 Detailed Solution
Formula Used:
Dot product of two vectors: \(\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta}\), where \(\theta\) is the angle between the vectors.
Magnitude of a vector: \(|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}\)
Sine of double angle: \(\sin{2\theta} = 2\sin{\theta}\cos{\theta}\)
Relation between sine and cosine: \(\sin^2{\theta} + \cos^2{\theta} = 1\)
Calculation:
Given:
Vector 1: \(\vec{a} = 4\hat{i} - \hat{j} + 2\hat{k}\)
Vector 2: \(\vec{b} = \hat{i} + 3\hat{j} - 2\hat{k}\)
⇒ \(\vec{a} \cdot \vec{b} = (4)(1) + (-1)(3) + (2)(-2) = 4 - 3 - 4 = -3\)
⇒ \(|\vec{a}| = \sqrt{4^2 + (-1)^2 + 2^2} = \sqrt{16 + 1 + 4} = \sqrt{21}\)
⇒ \(|\vec{b}| = \sqrt{1^2 + 3^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14}\)
⇒ \(\cos{\theta} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{-3}{\sqrt{21} \sqrt{14}} = \frac{-3}{\sqrt{3 \cdot 7 \cdot 2 \cdot 7}} = \frac{-3}{7\sqrt{6}}\)
⇒ \(\sin^2{\theta} = 1 - \cos^2{\theta} = 1 - \frac{9}{49 \cdot 6} = 1 - \frac{3}{98} = \frac{95}{98}\)
⇒ \(\sin{\theta} = \sqrt{\frac{95}{98}} = \frac{\sqrt{95}}{7\sqrt{2}}\)
⇒ \(\sin{2\theta} = 2 \sin{\theta} \cos{\theta} = 2 \cdot \frac{\sqrt{95}}{7\sqrt{2}} \cdot \frac{-3}{7\sqrt{6}} = \frac{-6\sqrt{95}}{49\sqrt{12}} = \frac{-6\sqrt{95}}{49 \cdot 2\sqrt{3}} = \frac{-3\sqrt{95}}{49\sqrt{3}}\)
⇒ \(\sin{2\theta} = \frac{-3\sqrt{95} \cdot \sqrt{3}}{49 \cdot 3} = \frac{-\sqrt{285}}{49}\)
∴ The value of \(\sin{2\theta}\) is \(\frac{-\sqrt{285}}{49}\)
Hence option 3 is correct
Vector or Cross Product Question 4:
A vector of magnitude \(\sqrt{2}\) units along the internal bisector of the angle between the vectors \(2\vec{i} - 2\vec{j} + \vec{k} \quad \text{and} \quad \vec{i} + 2\vec{j} + 2\vec{k} \) is
Answer (Detailed Solution Below)
Vector or Cross Product Question 4 Detailed Solution
Formula Used:
Unit vector along the internal bisector of two vectors \(\vec{a}\) and \(\vec{b}\) is given by:
\(\hat{c} = \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}\)
Resultant vector \(\vec{R} = |\vec{R}| \hat{c}\) where \(\hat{c}\) is the unit vector along the bisector and \(|\vec{R}|\) is the magnitude of the resultant vector.
Calculation:
Given:
Vector 1: \(\vec{a} = 2\hat{i} - 2\hat{j} + \hat{k}\)
Vector 2: \(\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}\)
Magnitude of resultant vector: \(\sqrt{2}\)
⇒ \(|\vec{a}| = \sqrt{2^2 + (-2)^2 + 1^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3\)
⇒ \(|\vec{b}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3\)
⇒ Unit vector along bisector: \(\hat{c} = \frac{2\hat{i} - 2\hat{j} + \hat{k}}{3} + \frac{\hat{i} + 2\hat{j} + 2\hat{k}}{3}\)
⇒ \(\hat{c} = \frac{3\hat{i} + 3\hat{k}}{3} = \hat{i} + \hat{k}\)
Hence option 4 is correct
Vector or Cross Product Question 5:
If \(̅{a}=\hat{i} \pm 2 \hat{j}+\hat{k}, ̅{b}=\hat{i}-\hat{j}+\hat{k}, ̅{c}=\hat{i}+\hat{j}-\hat{k}\), then a vector in the plane of a̅ and b̅, whose projection on c̅ is \(\frac{1}{\sqrt{3}}\), is
Answer (Detailed Solution Below)
Vector or Cross Product Question 5 Detailed Solution
Answer : 3
Solution :
Let F be the vector coplanar to a̅ and b̅. Then,
r̅ = a̅ + mb̅
= \((\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathbf{k}})+\mathrm{m}(\hat{\mathbf{i}}-\hat{\mathbf{j}}+\hat{\mathbf{k}})\)
= \((\hat{i}+2 \hat{j}+\hat{k})+m(\hat{i}-\hat{j}+\hat{k})\) ... (i)
Since the projection of r̅ along c̅ is \(\frac{1}{\sqrt{3}}, \frac{̅{x} \cdot ̅{c}}{|̅{c}|}= ± \frac{1}{\sqrt{3}}\)
\(\Rightarrow \frac{(1+m)+(2-m)-(1+m)}{\sqrt{3}}= ± \frac{1}{\sqrt{3}}\)
⇒ (1 + m) + (2 - m) - (1 + m) = ±1
∴ m = 3 or m = 1
Substituting m = 3 in equation (i), we get
\(\bar{r}=\hat{i}(1+3)+\hat{j}(2-3)+\hat{k}(1+3)\)
\(\Rightarrow \bar{r}=4 \hat{i}-\hat{j}+4 \hat{k}\)
Top Vector or Cross Product MCQ Objective Questions
Find the value of \(\rm \vec{a} \times \vec{a}\)
Answer (Detailed Solution Below)
Vector or Cross Product Question 6 Detailed Solution
Download Solution PDFConcept:
Dot product of two vectors is defined as:
\({\rm{\vec A}}{\rm{.\vec B = }}\left| {\rm{A}} \right|{\rm{ \times }}\left| {\rm{B}} \right|{\rm{ \times cos}}\;{\rm{\theta }}\)
Cross/Vector product of two vectors is defined as:
\({\rm{\vec A \times \vec B = }}\left| {\rm{A}} \right|{\rm{ \times }}\left| {\rm{B}} \right|{\rm{ \times sin}}\;{\rm{\theta }} \times \rm \hat{n}\)
where θ is the angle between \({\rm{\vec A}}\;{\rm{and}}\;{\rm{\vec B}}\)
Calculation:
To Find: Value of \(\rm \vec{a} \times \vec{a}\)
Here angle between them is 0°
\({\rm{\vec a \times \vec a = }}\left| {\rm{a}} \right|{\rm{ \times }}\left| {\rm{a}} \right|{\rm{ \times sin}}\;{\rm{0 }} \times \rm \hat{n}=0\)
If \(\rm\vec u = \hat i \times ( \vec a \times \hat i) + \hat j \times ( \vec a \times \hat j) + \hat k \times ( \vec a \times \hat k) \) then \(\rm \vec u \) is equal to
Answer (Detailed Solution Below)
Vector or Cross Product Question 7 Detailed Solution
Download Solution PDFGiven:
\(\rm\vec u = \hat i \times ( \vec a \times \hat i) + \hat j \times ( \vec a \times \hat j) + \hat k \times ( \vec a \times \hat k)\)
Concept:
î × î = ĵ × ĵ = k̂ × k̂ = 0
î × ĵ = k̂ , ĵ × k̂ = î , k̂ × î = ĵ
Calculation:
Let a = mî + nĵ +lk̂
According to the Question
\(\rm\vec u = \hat i \times ( \vec a \times \hat i) + \hat j \times ( \vec a \times \hat j) + \hat k \times ( \vec a \times \hat k)\)
\(\vec u \) = î × (mî + nĵ +lk̂ × î) + ĵ × (mî + nĵ +lk̂ × ĵ) + k̂ × (mî + nĵ +lk̂ × k̂)
\(\vec u \) = î × (-nk̂ + lĵ) + ĵ × (mk̂ -lî ) + k̂ × (-mĵ + nî)
\(\vec u \) = nĵ + lk̂ + mî + lk̂ + mî + nĵ
\(\vec u \) = 2(mî + nĵ +lk̂ ) = 2\(\vec a \)
∴ The correct option is 3
If \(\rm \left| {\vec a} \right| = 3,\;\left| {\vec b} \right| = 4\;and \;\rm \vec a \cdot \;\vec b = 6\), then find the value of \(\rm \left| {\vec a \times \;\vec b} \right|\)
Answer (Detailed Solution Below)
Vector or Cross Product Question 8 Detailed Solution
Download Solution PDFConcept:
Let \(\rm \vec a\;and\;\vec b\) are two vectors
\(\rm \vec a \cdot \;\vec b = \left| {\vec a} \right| × \left| {\vec b} \right| × \cos θ \)
\(\rm \vec a × \;\vec b = \;\;\left| {\vec a} \right| × \left| {\vec b} \right| × \sin θ × \;\hat n,\;where\;\hat n\) is the unit vector perpendicular to both \(\rm \vec a\;and\;\vec b\)
Calculation:
Given: \(\rm \left| {\vec a} \right| = 3,\;\left| {\vec b} \right| = 4\;and \;\rm \vec a \cdot \;\vec b = 6\)
As we know, \(\rm \vec a \cdot \;\vec b = \left| {\vec a} \right| × \left| {\vec b} \right| × \cos θ \)
⇒ 6 = 3 × 4 × cos θ
⇒ cos θ = \(\frac {6} {12} = \frac 1 2\)
∴ θ = 60°
As we know that, If \(\rm \vec a\;and\;\vec b\) are two vectors, then
\(\rm \vec a × \;\vec b = \;\;\left| {\vec a} \right| × \left| {\vec b} \right| × \sin θ × \;\hat n\)
\(\rm \left| {\vec a × \;\vec b} \right| = \left| {\vec a} \right| × \left| {\vec b} \right| × \left| {\sin θ } \right| × \left| {\hat n} \right| = \;\left| {\vec a} \right| × \left| {\vec b} \right| × \sin θ \) (∵ Magnitude of a unit vector is one)
\(\rm \left| {\vec a × \;\vec b} \right|\) = 3 × 4 × sin 60°
\(\rm ∴ \rm \left| {\vec a × \;\vec b} \right| = 3 × 4 × \frac{\sqrt 3}{2} = 6\sqrt 3\)
What is \(\rm \left( {2\vec a - 3\vec b} \right) \times \left( {2\vec a + 3\vec b} \right)\)equal to?
Answer (Detailed Solution Below)
Vector or Cross Product Question 9 Detailed Solution
Download Solution PDFConcept:
\(\rm \overrightarrow{a} \times \overrightarrow{a} = 0\)
\(\rm \overrightarrow{a} \times \overrightarrow{b} = - \overrightarrow{b} \times \overrightarrow{a} \)
Calculation:
Given
\(\rm = \left( {2\vec a - 3\vec b} \right) \times \left( {2\vec a + 3\vec b} \right)\)
\(\rm = 2\overrightarrow{a} \times 2\overrightarrow{a} + 2\overrightarrow{a} \times 3\overrightarrow{b} - 3\overrightarrow{b} \times 2\overrightarrow{a} - 3\overrightarrow{b} \times 3\overrightarrow{b}\)
\(\rm = 0 + 2\overrightarrow{a} \times 3\overrightarrow{b} - 3\overrightarrow{b} \times 2\overrightarrow{a} - 0\)
\(\rm = 6 \: (\overrightarrow{a} \times \overrightarrow{b}) + 6\: (\overrightarrow{a} \times \overrightarrow{b} )\)
\(\rm = 12\: (\overrightarrow{a} \times \overrightarrow{b}) \)
Additional Information
Properties of Scalar Product
\(\rm \overrightarrow{a}.\overrightarrow{a} = \left |\overrightarrow{a} \right |^{2}\)
\(\rm \overrightarrow{a}.\overrightarrow{b} = \overrightarrow{b}.\overrightarrow{a}\) (Scalar product is commutative)
\(\rm \overrightarrow{a}.\overrightarrow{0} = 0\)
\(\rm \overrightarrow{a}.(\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} . \overrightarrow{b} + \overrightarrow{a} . \overrightarrow{c}\) (Distributive of scalar product over addition)
In terms of orthogonal coordinates for mutually perpendicular vectors, it is seen that \(\rm \overrightarrow{i}. \overrightarrow{i} = \overrightarrow{j}. \overrightarrow{j} = \overrightarrow{k} . \overrightarrow{k} =1\)
Properties of Vector Product
\(\rm \overrightarrow{a} \times \overrightarrow{a} = 0\)
\(\rm \overrightarrow{a} \times \overrightarrow{b} = - \overrightarrow{b} \times \overrightarrow{a} \) (non-commutative)
\(\rm \overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}\) (Distributive of vector product over addition)
\(\rm \overrightarrow{i} \times \overrightarrow{i} = \overrightarrow{j} \times \overrightarrow{j} = \overrightarrow{k} \times \overrightarrow{k} = 0\)
\(\rm \overrightarrow{i} \times \overrightarrow{j} = \overrightarrow{k} ,\overrightarrow{j} \times \overrightarrow{k} = \overrightarrow{i}, \overrightarrow{k} \times \overrightarrow{i} = \overrightarrow{j} \)
What is the vector perpendicular to both the vectors î - ĵ and î ?
Answer (Detailed Solution Below)
Vector or Cross Product Question 10 Detailed Solution
Download Solution PDFConcept:
Let \(\rm\vec{a}\) and \(\rm\vec{b}\) be the two vectors and the vector \(\rm\vec{c}\) perpendicular to both \(\rm\vec{a}\) and \(\rm\vec{b}\)
Hence \(\rm\vec{c} = \rm\vec{a} × \rm\vec{b}\)
Calculation:
Let vector \(\rm\vec{c}\) is perpendicular to both the vectors î - ĵ and î
Therefore, \(\rm\vec{c}\) = (î - ĵ) × î
= (î × î) - (ĵ × î)
= 0 - (-k̂)
= k̂
If \(\rm \left(\vec a\times\vec b\right)\times\vec c=\vec a\times\left(\vec b\times\vec c\right)\), then which of the following is true?
Answer (Detailed Solution Below)
Vector or Cross Product Question 11 Detailed Solution
Download Solution PDFConcept:
For three vectors \(\rm \vec A\), \(\rm \vec B\) and \(\rm \vec C\):
- Triple Cross Product: is defined as: \(\rm \vec A\times\left(\vec B\times\vec C\right)=\left(\vec A.\vec C\right)\vec B-\left(\vec A.\vec B\right)\vec C\)
Calculation:
Given that: \(\rm \left(\vec a\times\vec b\right)\times\vec c=\vec a\times\left(\vec b\times\vec c\right)\)
⇒ \(\rm -\vec c \times\left(\vec a\times\vec b\right)=\vec a\times\left(\vec b\times\vec c\right)\)
⇒ \(\rm -\left(\vec c.\vec b\right)\vec a+\left(\vec c.\vec a\right)\vec b=\left(\vec a.\vec c\right)\vec b-\left(\vec a.\vec b\right)\vec c\)
⇒ \(\rm \left(\vec a.\vec b\right)\vec c-\left(\vec c.\vec b\right)\vec a=0\)
⇒ \(\rm \vec b\times\left(\vec c\times\vec a\right)=0\), which is the required answer.
Find sin θ if theta is the angle between the vectors \(\;\vec a = 3\hat j + 4\hat k\;and\;\vec b = 6\hat i + 8\hat k\)
Answer (Detailed Solution Below)
Vector or Cross Product Question 12 Detailed Solution
Download Solution PDFConcept:
Cross product of vectors:
- \(|\vec a \times \vec b| = |\vec a| \cdot |\vec b| \cdot sin \theta \)
- If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \times \;\vec b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{a_1}}&{{a_2}}&{{a_3}}\\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right|\)
Given: \(\;\vec a = 3\hat j + 4\hat k\;and\;\vec b = 6\hat i + 8\hat k\)
⇒ \(\vec a \times \;\vec b = \left| {\begin{array}{*{20}{c}} {\hat i}&{\hat j}&{\hat k}\\ {{0}}&{{3}}&{{4}}\\ {{6}}&{{0}}&{{8}} \end{array}} \right|\)
⇒ \(\vec a \times \;\vec b = \hat i(24 -0) - \hat j(0 - 24) + \hat k(0 - 18) = 24\hat i + 24\hat j-18\hat k\)
⇒ \(|\vec a \times \vec b| = \rm \sqrt{24^{2}+24^{2}+18^{2}}=\sqrt{1476}=6\sqrt{41}\)
⇒ \(|\vec a| = 5 \ and \ |\vec b| = 10\)
As we know that, \(|\vec a \times \vec b| = |\vec a| \cdot |\vec b| \cdot sin \theta \)
⇒ \(\sin \theta = \frac{{\left| {\vec a \times \;\vec b} \right|}}{{\left| {\vec a} \right| \cdot \left| {\vec b} \right|}} = \frac{{6\sqrt {41} }}{{50}} = \frac{{3\sqrt {41} }}{{25}}\)
Hence, the correct option is 3.
A vector is perpendicular to both the vectors \(\rm\hat{i} +\hat{j}\) and \(\rm \hat{j} +\hat{k}\) is
Answer (Detailed Solution Below)
Vector or Cross Product Question 13 Detailed Solution
Download Solution PDFConcept:
Let \(\rm\vec{a}\) and \(\rm\vec{b}\) be the two vectors and the vector \(\rm\vec{c}\) perpendicular to both \(\rm\vec{a}\) and \(\rm\vec{b}\)
Hence \(\rm\vec{c} = \rm\vec{a} × \rm\vec{b}\)
Calculation:
Let vector \(\rm\vec{c}\) is perpendicular to both the vectors î + ĵ and ĵ + k̂
Let \(\rm \vec a \) = î + ĵ and \(\rm \vec b \) = ĵ + k̂
Therefore, \(\rm\vec{c} = \rm\vec{a} × \rm\vec{b}\)
= (î + ĵ) × (ĵ + k̂)
= î × ĵ + î × k̂ + ĵ × ĵ + ĵ × k̂
= k̂ - ĵ + 0 + î
= î - ĵ + k̂
If \(\rm |\vec{a}× \vec{b}| = |\vec{a} \cdot \vec{b}|\) ,then angle between \(\rm \vec{a} \; \text {and} \; \vec{b}\) is
Answer (Detailed Solution Below)
Vector or Cross Product Question 14 Detailed Solution
Download Solution PDFConcept:
Let \(\rm\vec {a}\) and \(\rm \vec {b}\) be the two vectors,
Dot product of two vectors is given by: \(\rm \vec{a}.\vec{b} = |\vec{a}||\vec{b}| cos θ\)
Cross product of two vectors is given by: \(\rm \vec{a}× \vec{b} = |\vec{a}||\vec{b}| \sin θ\; \hat{n}\), Where \(\rm \hat n\) is a unit vector
Calculation:
Given: \(\rm |\vec{a}× \vec{b}| = |\vec{a} \cdot \vec{b}|\)
To Find: Angle between \(\rm \vec{a} \; \text {and} \; \vec{b}\)
\(\rm |\vec{a}× \vec{b}| = |\vec{a} \cdot \vec{b}|\)
\(⇒ \rm |\vec{a}||\vec{b}| \sin θ\;| \hat{n}| = |\vec{a}||\vec{b}| \cos θ\)
⇒ sin θ = cos θ (∵ |\(\rm \hat n\)| = 1)
⇒ tan θ = 1
∴ θ = 45°
What is \(\rm \left( {\vec a + \vec b} \right) \times \left( {\vec a - \vec b} \right)\)equal to?
Answer (Detailed Solution Below)
Vector or Cross Product Question 15 Detailed Solution
Download Solution PDFConcept:
Properties of vectors:
If \(\rm \vec a\) and \(\rm \vec b\) are two vectors parallel to each other then \(\rm \vec a \times \vec b = 0\)
Cross product of parallel vectors are zero ⇔ \(\rm \vec a \times \vec a = 0,{\rm{\;}}\vec b \times \vec b = 0{\rm{\;and\;}}\vec c \times \vec c = 0\)
A cross or vector product is not commutative ⇔ \(\rm \vec a \times \vec b = - {\rm{\;}}\vec b \times \vec a\)
Calculation:
We have to find the value of \(\left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right)\)
\(\Rightarrow \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) = {\rm{\;\vec a\;}} \times {\rm{\;\vec a}} - {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} + {\rm{\;\vec b\;}} \times {\rm{\;\vec a}} - {\rm{\;\vec b\;}} \times {\rm{\;\vec b}}\)
We know that \({\rm{\vec a\;}} \times {\rm{\;\vec b}} = - {\rm{\;\vec b\;}} \times {\rm{\;\vec a}}\)
\(\Rightarrow \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) = {\rm{\;}}0 - {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;\vec a\;}} \times {\rm{\;\vec b}} - {\rm{\;}}0\) \(\because \left( {{\rm{\vec a\;}} \times {\rm{\;\vec a}} = \;{\rm{\vec b\;}} \times {\rm{\;\vec b}} = 0} \right)\)
\(\Rightarrow \left( {{\rm{\vec a}} + {\rm{\vec b}}} \right) \times \left( {{\rm{\vec a}} - {\rm{\vec b}}} \right) = {\rm{\;}}-2\;\left( {{\rm{\;\vec a\;}} \times {\rm{\;\vec b}}} \right)\)
∴ Option 2 is correct.