The eccentricity of the hyperbola \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\) is

  1. \(\sqrt { \frac{3}{4}}\)
  2. \(\sqrt { \frac{5}{4}}\)
  3. \(\sqrt { \frac{7}{4}}\)
  4. \(\sqrt { \frac{7}{3}}\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt { \frac{7}{4}}\)
Free
Army Havildar SAC - Quick Quiz
1.8 K Users
5 Questions 10 Marks 6 Mins

Detailed Solution

Download Solution PDF

Concept:

Standard equation of an hyperbola : \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) 

  • Coordinates of foci = (± ae, 0)
  • Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 + b2
  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\)

Compare with the standard equation of a hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 100 and b2 = 75

Now, Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) 

\(\sqrt {1 + \frac{75}{100}}\)

\(\sqrt {1 + \frac{3}{4}}\)

\(\sqrt { \frac{7}{4}}\)

Latest Army Havildar SAC Updates

Last updated on Apr 28, 2025

-> The Indian Army has released the official notification for the post of Indian Army Havildar SAC (Surveyor Automated Cartographer).

-> Interested candidates had applied online from 13th March to 25th April 2025.

-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.

-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail. 

More Parabola, Ellipse and Hyperbola Questions

Get Free Access Now
Hot Links: teen patti master new version teen patti 3a teen patti wala game teen patti master apk teen patti joy mod apk