a = 2î − 3ĵ − k̂, b = −î + k̂, c = 2ĵ − k̂ అయితే, (a+b) మరియు (b+c) లను వికర్ణాలుగా కలిగిన సమాంతర చతుర్భుజం యొక్క వైశాల్యం ఎంత?

This question was previously asked in
MP HSTET Varg 1 - 2018 (Mathematics) Held on 6th Feb 2019 Shift 2
View all MPTET Varg 1 Papers >
  1. 1 చ.యూనిట్
  2. 2 చ.యూనిట్లు
  3. \(​\frac{1}{2}\) చ.యూనిట్లు
  4. \(\frac{1}{4}\) చ.యూనిట్లు

Answer (Detailed Solution Below)

Option 3 : \(​\frac{1}{2}\) చ.యూనిట్లు
Free
MPTET Varg 1 History Full Test 1
1.5 K Users
150 Questions 150 Marks 150 Mins

Detailed Solution

Download Solution PDF

ఉపయోగించిన భావన:

సమాంతర చతుర్భుజం యొక్క వికర్ణాలు \(\vec{d}_1\) మరియు \(\vec{d}_2\) అయితే, సమాంతర చతుర్భుజం యొక్క వైశాల్యం \(\frac{1}{2}\left|\vec{d}_1 \times \vec{d}_2\right|\)

గణన:

\(​\vec{a}+\vec{b}=2 \hat{i}-3 \hat{j}-\hat{k}-\hat{i}+\hat{k} \)
\( \Rightarrow \vec{a}+\vec{b}=\hat{i}-3 \hat{j} \)
మరియు \(\vec{b}+\vec{c}=-\hat{i}+\hat{k}+2 \hat{j}-\hat{k} \)
\( \Rightarrow \vec{b}+\vec{c}=-\hat{i}+2 \hat{j} \)
సమాంతర చతుర్భుజం యొక్క వైశాల్యం \(=\frac{1}{2}|(\vec{a}+\vec{b}) \times(\vec{b}+\vec{c})| \)
\( \Rightarrow \text { area }=\frac{1}{2}\left|\begin{array}{ccc} \hat{2}& \hat{j}& \hat{k} \\ 1 & -3 & 0 \\ -1 & 2 & 0 \end{array}\right|\)
\( \Rightarrow \text { area }=\frac{1}{2}|\hat{i}(0-0)-j(0-0)+\hat{k}(2-3)| \)\( \Rightarrow \text { area }=\frac{1}{2}|-\hat{k}|=\frac{1}{2}\)

Latest MPTET Varg 1 Updates

Last updated on Feb 14, 2024

-> The MPTET Varg Result has been released for the ongoing 2023 cycle.

-> The MPTET Varg 1 notification was released for 8720 vacancies of High School Teachers.

-> The selection is expected to be based on a written test and document verification.

-> To get a successful selection candidates can refer to the MP Varg 1 previous year papers to know what type of questions are asked and what can be asked in the exam.

-> Also, attempt the MP TET Mock Tests for better practice.

Get Free Access Now
Hot Links: teen patti - 3patti cards game teen patti real money app teen patti pro