\(\rm \frac{d}{dx}x^{2x}\) = 

  1. 2x2log x
  2. \(\rm \frac{x^2}{2(1+log x)}\)
  3.  x2x 
  4.  2x2x [1 + log x]

Answer (Detailed Solution Below)

Option 4 :  2x2x [1 + log x]
Free
Electric charges and coulomb's law (Basic)
1 Lakh Users
10 Questions 10 Marks 10 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

\(\rm log\ x^n=nlog\ x\)

\(\rm \frac{d}{dx}[log \ x ]=\frac1x\)

गुणनफल नियम

\(\rm \frac{d}{dx}[f(x)g(x)]=\frac{d}{dx}[f(x)] \ g(x) + \frac{d}{dx}[g(x)]\ f(x)\)

 

गणना:

माना कि y = x2x 

दोनों पक्षों पर लॉग लेते हुए हम प्राप्त करते हैं

log y = log( x2x ) = 2x logx                 

(∵ \(\rm log\ x^n=nlog\ x\))

अब, अवकलज लेते हुए,

\(\rm \frac{d}{dx}[log \ y]\) = 2{ \(\rm \frac{d}{dx}[x] \ log \ x + \frac{d}{dx}[log \ x]\ x\) }

\(\rm \frac1y\frac{dy}{dx}\) = 2[log x + x. \(\rm \frac1x\)]                       

(∵ \(\rm \frac{d}{dx}[log \ x ]=\frac1x\))

⇒ \(\rm \frac{dy}{dx}\) = 2y [1 + log x]

⇒ \(\rm \frac{dy}{dx}\) = 2x2x [1 + log x]                     

(∵ y = x2x )

इसलिए, विकल्प (4) सही है।

Latest Airforce Group X Updates

Last updated on May 21, 2025

-> Indian Airforce Agniveer Group X 2025 Last date has been extended.

-> Candidates can apply online from 7th to 2nd February 2025.

-> The online examination will be conducted from 22nd March 2025 onwards.

-> The selection of the candidates will depend on three stages which are Phase 1 (Online Written Test), Phase 2 ( DV, Physical Fitness Test, Adaptability Test), and Phase 3 (Medical Examination).

-> The candidates who will qualify all the stages of selection process will be selected for the Air Force Group X posts & will receive a salary ranging of Rs. 30,000.

-> This is one of the most sought jobs. Candidates can also check the Airforce Group X Eligibility here.

More Differential Calculus Questions

Get Free Access Now
Hot Links: teen patti lucky teen patti gold real cash teen patti real cash game