एक निकाय समीकरण पर विचार करें:

\(2x+y-z=0\),

\(4x - py + 4z = 4\) और

\(x-y+z=q\)

जहाँ \(p, q \in I\) और \(p, q \in [1, 10]\) है, तब सही कथन(कथनों) की पहचान करें।

  सूची-I सूची-II
(I) क्रमित युग्मों \((p, q)\) की संख्या जिसके लिए समीकरण निकाय का अद्वितीय हल है (P) 1
(II) क्रमित युग्मों \((p, q)\) की संख्या जिसके लिए समीकरण निकाय का कोई हल नहीं है (Q) 9
(III) क्रमित युग्मों \((p, q)\) की संख्या जिसके लिए समीकरण निकाय का अनंत हल है (R) 91
(IV) क्रमित युग्मों \((p, q)\) की संख्या जिसके लिए समीकरण निकाय का कम से कम एक हल है (S) 90

  1. I → Q, II → S, III → P, IV → R

  2. I → S, II → Q, III → P, IV → R

  3. I → P, II → R, III → S, IV → R

  4. I → Q, II → P, III → S, IV → P

Answer (Detailed Solution Below)

Option 2 :

I → S, II → Q, III → P, IV → R

Detailed Solution

Download Solution PDF

गणना:

दिया गया है:

रैखिक समीकरणों का निकाय है:

\(2x + y - z = 0\)

\(4x - py + 4z = 4\)

\(x - y + z = q\)

\(p, q \in I\) और \(p, q \in [1, 10]\)

गुणांक आव्यूह A है:

\(A = \begin{bmatrix} 2 & 1 & -1 \\ 1 & -\frac{p}{4} & 1 \\ 1 & -1 & 1 \end{bmatrix}\)

संवर्धित आव्यूह [A|B] है:

\([A|B] = \begin{bmatrix} 2 & 1 & -1 & 0 \\ 1 & -\frac{p}{4} & 1 & 1 \\ 1 & -1 & 1 & q \end{bmatrix}\)

A के सारणिक, |A| की गणना करें:

\(|A| = 2(-\frac{p}{4} + 1) - 1(1 - 1) - 1(-1 + \frac{p}{4})\)

\(|A| = -\frac{p}{2} + 2 + 0 + 1 - \frac{p}{4}\)

\(|A| = 3 - \frac{3p}{4}\)

⇒ अद्वितीय हल के लिए, \(|A| \ne 0\):

\(3 - \frac{3p}{4} \ne 0\)

\(3 \ne \frac{3p}{4}\)

\(p \ne 4\)

कोई हल नहीं या अनंत हल के लिए, \(|A| = 0\), इसलिए \(p = 4\) है। 

⇒ यदि \(p=4\) है, तो निकाय बन जाता है:

\(2x + y - z = 0\)

\(x - y + z = 1\)

\(x - y + z = q\)

⇒ दूसरे और तीसरे समीकरणों से, एक हल के अस्तित्व के लिए, \(1 = q\) है। 

⇒ यदि \(p = 4\) और \(q = 1\) है, अनंत हल का अस्तित्व हैं।

⇒ यदि \(p = 4\) और \(q \ne 1\) है, किसी हल का अस्तित्व नहीं है।

(I) अद्वितीय हल: \(p \ne 4\). \(p\), 9 मान ले सकता है (1 से 10 तक 4 को छोड़कर)। \(q\),10 मान ले सकता है। कुल युग्म: 9 × 10 = 90

(II) कोई हल नहीं: \(p = 4\) और \(q \ne 1\). \(q\) के लिए 9 मान है। \(p\) के लिए 1 युग्म। कुल युग्म: 1 × 9 = 9

(III) अनंत हल: \(p = 4\) और \(q = 1\). केवल 1 युग्म।

(IV) कम से कम एक हल: कुल युग्म - कोई हल नहीं वाले युग्म= 100 - 9 = 91

∴ (I) - (S), (II) - (Q), (III) - (P), (IV) - (R)

More Application of Determinants Questions

More Determinants Questions

Get Free Access Now
Hot Links: mpl teen patti teen patti neta teen patti - 3patti cards game downloadable content teen patti game paisa wala teen patti game online