Question
Download Solution PDFयदि sin θ + cos θ = √3 है, तो tan θ + cot θ किसके बराबर है।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFस्पष्टीकरण -
आइए त्रिकोणमितीय सर्वसमिकाओं का उपयोग करने के लिए दिए गए समीकरण \( \sin \theta + \cos \theta = \sqrt{3}\) का वर्ग करें:
\( (\sin \theta + \cos \theta)^2 = (\sqrt{3})^2\)
\( \sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = 3\)
पायथागॉरियन सर्वसमिका का उपयोग करने पर \(\sin^2 \theta + \cos^2 \theta = 1\) :
\( 1 + 2 \sin \theta \cos \theta = 3 \\ 2 \sin \theta \cos \theta = 2 \\ \sin \theta \cos \theta = 1 \)
हम जानते हैं कि -
\(\tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} \)
पायथागॉरियन सर्वसमिका का उपयोग करने पर \(\sin^2 \theta + \cos^2 \theta = 1\) and \( \sin \theta \cos \theta = 1 :\)
\( \tan \theta + \cot \theta = \frac{1}{1} = 1 \)
अतः, \( \tan \theta + \cot \theta = 1 .\)
Last updated on Jan 29, 2025
-> The Bihar STET 2025 Notification will be released soon.
-> The written exam will consist of Paper-I and Paper-II of 150 marks each.
-> The candidates should go through the Bihar STET selection process to have an idea of the selection procedure in detail.
-> For revision and practice for the exam, solve Bihar STET Previous Year Papers.