Properties of Discrete Fourier Transform MCQ Quiz - Objective Question with Answer for Properties of Discrete Fourier Transform - Download Free PDF
Last updated on Jun 10, 2025
Latest Properties of Discrete Fourier Transform MCQ Objective Questions
Properties of Discrete Fourier Transform Question 1:
Given a real sequence and 8 point DFT output are X(0) = 5, X(1) = 1 + j, X(2) = 3 + j, X(3) = 2+ 3j What is X(6)?
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 1 Detailed Solution
Explanation:
Discrete Fourier Transform (DFT) and Symmetry Properties
Introduction: The Discrete Fourier Transform (DFT) is a mathematical technique used to analyze the frequency content of discrete signals. When a signal is real-valued, its DFT exhibits specific symmetry properties that simplify computations and provide insights into the relationship between various frequency components. In this problem, we are tasked with finding the value of X(6) of an 8-point DFT, given the values of X(0), X(1), X(2), and X(3). The key to solving this lies in exploiting the symmetry properties of the DFT.
Symmetry Properties of DFT for Real-Valued Sequences:
- Conjugate Symmetry: If the input sequence is real-valued, the DFT coefficients satisfy the following property:
X(N-k) = conjugate(X(k)) for k = 1, 2, ..., N-1.
Here, N is the number of points in the DFT (in this case, N = 8).
- Special Cases:
- X(0) is always real because it represents the sum of all input values (DC component).
- If N is even, X(N/2) (middle frequency) is also real.
In this problem, the input sequence is real-valued, so we can apply the conjugate symmetry property to find X(6).
Given:
- X(0) = 5
- X(1) = 1 + j
- X(2) = 3 + j
- X(3) = 2 + 3j
We need to determine the value of X(6). Using the conjugate symmetry property of the DFT:
X(N-k) = conjugate(X(k))
For N = 8, the relationship for X(6) becomes:
X(6) = conjugate(X(2))
From the given data:
X(2) = 3 + j
Taking the complex conjugate:
conjugate(X(2)) = 3 - j
Therefore:
X(6) = 3 - j
Correct Answer: Option 2
Properties of Discrete Fourier Transform Question 2:
Let the impulse response of an LTI system is given as:
\(h\left( n \right) = \frac{{{e^{j\frac{\pi }{2}n}}\sin \left( {n\pi /4} \right)}}{{\left( {\pi n} \right)}}\)
The input x(n) is given as:
\(x\left( n \right) = 10 + 50\cos \left( {\pi n + \frac{\pi }{2}} \right) + 10\sin \left( {\frac{{2\pi n}}{{15}}} \right)\)
The output of the system at n = -1
Answer (Detailed Solution Below) 0
Properties of Discrete Fourier Transform Question 2 Detailed Solution
Analysis:
\(h\left( n \right) = \frac{{{e^{j\frac{\pi }{2}n}}\sin \left( {n\pi /4} \right)}}{{\pi n}}\)
\( = \frac{{{e^{j\frac{\pi }{2}n}}\sin \left( {n\pi /4} \right)}}{{\pi n}} = {e^{j\frac{\pi }{2}n}}{h_1}\left( n \right)\)
As the Fourier transform of a discrete and aperiodic signal is continuous and periodic.
∴ H1(ω) is periodic with a period of 2π.
Now, \({e^{j\frac{\pi }{2}n}}\) shifts the spectrum by \(\frac{\pi }{2}\)
∴ In the output, 10 will not pass.
At n = -1
\(50\cos \left( { - \pi + \frac{\pi }{2}} \right) = 50\cos \left( { - \frac{\pi }{2}} \right) = 0\)
\(\sin \left( {\frac{{ - 2\pi }}{{15}}} \right)\) will not pass.
Properties of Discrete Fourier Transform Question 3:
In a discrete-time Low pass Filter, the frequency response is
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 3 Detailed Solution
Explanation:
D.T.F.T
Discrete-time Fourier transform is defined by
\(X\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}\)
It is periodic with 2π
Periodicity of DTFT
For any integer k,
\(X\left( {{e^{j\left( {\omega + 2\pi k} \right)}}} \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\left( {\omega + 2\pi k} \right)n}}\)
\(= \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}{e^{ - j2\pi kn}}\)
\(X\left( {{e^{j\left( {\omega + 2\pi k} \right)}}} \right) = x\left[ n \right]{e^{ - j\omega n}}\)
\(X\left( {{e^{j\left( {\omega + 2\pi k} \right)}}} \right) = X\left( {{e^{j\omega }}} \right)\)
Discrete LPF
Discrete-time LPF is shown below
\(X\left( {\rm{\Omega }} \right) = \left\{ {\begin{array}{*{20}{c}} {1;\;\left| {\rm{\Omega }} \right| \le \omega }\\ {0;else\;\omega < \left| {\rm{\Omega }} \right| \le \pi } \end{array}} \right\}\)
From the response itself, it is clear that the LPF is periodic with 2π as a period.
Properties of Discrete Fourier Transform Question 4:
The first six points of the 8 point DFT of a real-valued sequence are 5, 1 – 3j, 0, 3 – 4j, 0 and 3 + 4j. The last two points of the DFT will be respectively:
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 4 Detailed Solution
Concept:
N-point DFT of a sequence x(n) defined for n = 0, 1, 2 ... N-1 is given by:
\(X\left( k \right)=\sum_{n=0}^{N-1}x\left( n \right){{e}^{-jk\omega n}}\)
Also If \(x(n)\overset{DFT}{\longleftrightarrow} X(k)\)
The Conjugate symmetric property of DFT states:
X(k) = X*(N – k) 'or' X(N – k) = X*(k)
Calculation:
Given, X(k) = {5, 1 - 3j, 0, 3 – 4j, 0, 3 + 4j, A, B]
Where A and B are the missing variable values.
Using the conjugate symmetric property of DFT: X(k) = X*(N – k)
We find X(6) = A = X*(8 – 6) = X*(2)
With X(2) = 0, X*(2) = 0
So, X(6) = A = 0
Similarly,
B = X(7) = X*(8 – 7) = X*(1)
With, X(1) = 1 – 3j
X(7) = X*(1) = 1+3j
So, A = 0 and B = 1 + 3j
Option (2) is therefore correct.Properties of Discrete Fourier Transform Question 5:
For given x(n), X(ejω) is the discrete time fourier transform. If \(x\left( n \right) = {\left( {\frac{1}{2}} \right)^n}u\left( n \right)\) and y(n) = x2(n), then the value of Y(ej0) is:
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 5 Detailed Solution
Concept:
\({\alpha ^n}u\left( n \right)\mathop \to \limits^{D.T.F.T.} \frac{1}{{1 - \alpha {e^{ - j\omega }}}}\)
Calculation:
\(x\left( n \right) = {\left( {\frac{1}{2}} \right)^n}u\left( n \right)\)
\(y\left( n \right) = {x^2}\left( {\rm{n}} \right) = {\left( {\frac{1}{2}} \right)^{2n}}\)
\(u\left( n \right) = {\left( {\frac{1}{4}} \right)^n}u\left( n \right)\)
\({\rm{Y}}\left( {{e^{j\omega }}} \right) = \frac{1}{{1 - \frac{1}{4}{e^{ - j\omega }}}}\)
\({\rm{Y}}\left( {{e^{j0}}} \right) = \frac{1}{{1 - \frac{1}{4}{e^{ - j0}}}}\)
\({\rm{Y}}\left( {{e^{j0}}} \right) = \;\frac{4}{3}\)
Top Properties of Discrete Fourier Transform MCQ Objective Questions
Consider a discrete-time periodic signal \(\rm x\left[ n \right] = sin\left( {\frac{{\pi n}}{5}} \right)\). Let ak be the complex Fourier Series Coefficient (FSC) of x[n]. ak is non-zero when k = Bm ± 1 , where 'm' is any integer. The value of B is_______.
Answer (Detailed Solution Below) 9.99 - 10.01
Properties of Discrete Fourier Transform Question 6 Detailed Solution
Download Solution PDFConcept:
The Fourier series representation of discrete time periodic sequence in given by:
\(x\left( n \right) = \mathop \sum \limits_{k = 0}^{N - 1} {a_k}{e^{jk{\omega _0}n}}\)
x(n) = … + a–1 e-jωon + 1 + a1 ejωon + … ---(1)
ak = Fourier series coefficient periodic by N.
ω0 = Fundamental frequency.
Calculation:
\(x\left( n \right) = \sin \left( {\frac{{\pi n}}{5}} \right)\)
The period of the given sequence will be:
\(N = \frac{{2\pi }}{{\pi /5}} = 10\)
So \({\omega _0} = \frac{{2\pi }}{{10}} = \frac{\pi }{5}\)
x(n) can be written as:
\(x\left( n \right) = \frac{1}{{2j}}\left( {{e^{j\frac{\pi }{5} \cdot n\;}} - {e^{ - j\frac{\pi }{5}n}}} \right)\) (Euler’s identity)
\(\Rightarrow \frac{1}{{2j}} \cdot {e^{j\frac{\pi }{5} \cdot n}} - \frac{1}{{2j}} \cdot {e^{ - j\frac{\pi }{5}n}} = \frac{1}{{2j}}{e^{j{\omega _0}n}} = \frac{{ - 1}}{{2j}}\;{e^{ - j{\omega _0}n}}\)
Comparing this with Equation-(1), we get:
\(\Rightarrow {a_{ - 1}} = \frac{{ - 1}}{{2j}}\;\;and\;\;{a_1} = \frac{1}{{2j}}\)
Since the fourier coefficient are periodic,
ak = ak+N
So, a-1 = a-1+10 = a-1+10+10 = a-1+10+10+10 … = a-1+m(10)
For any integer m.
Similarly,
a1 = a1+10 = a1+10+10 = a1+10+10+10 ---- = a1+m(10)
So, ak will be non-zero for k = ± 1 + m(10)
For any other value of k, ak will be zero.
The first six points of the 8 point DFT of a real-valued sequence are 5, 1 – 3j, 0, 3 – 4j, 0 and 3 + 4j. The last two points of the DFT will be respectively:
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 7 Detailed Solution
Download Solution PDFConcept:
N-point DFT of a sequence x(n) defined for n = 0, 1, 2 ... N-1 is given by:
\(X\left( k \right)=\sum_{n=0}^{N-1}x\left( n \right){{e}^{-jk\omega n}}\)
Also If \(x(n)\overset{DFT}{\longleftrightarrow} X(k)\)
The Conjugate symmetric property of DFT states:
X(k) = X*(N – k) 'or' X(N – k) = X*(k)
Calculation:
Given, X(k) = {5, 1 - 3j, 0, 3 – 4j, 0, 3 + 4j, A, B]
Where A and B are the missing variable values.
Using the conjugate symmetric property of DFT: X(k) = X*(N – k)
We find X(6) = A = X*(8 – 6) = X*(2)
With X(2) = 0, X*(2) = 0
So, X(6) = A = 0
Similarly,
B = X(7) = X*(8 – 7) = X*(1)
With, X(1) = 1 – 3j
X(7) = X*(1) = 1+3j
So, A = 0 and B = 1 + 3j
Option (2) is therefore correct.Consider the signal
\(\rm x[n] = 6 \delta[n + 2] + 3\delta[n + 1] + 8\delta[n] + 7\delta[n − 1] + 4\delta[n − 2]\) .
If \(\rm X(e^{j\omega})\) is the discrete-time Fourier transform of \(\rm x[n]\),
then \(\frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\sin ^2}\left( {2{\rm{\omega }}} \right){\rm{d\omega \;}}\) is equal to _________.
Answer (Detailed Solution Below) 8
Properties of Discrete Fourier Transform Question 8 Detailed Solution
Download Solution PDF\(\frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\sin ^2}\left( {2{\rm{\omega }}} \right){\rm{d\omega }}\)
We have
\({\sin ^2}\left( {2{\rm{\omega }}} \right) = \frac{{1 - \cos 4{\rm{\omega }}}}{2}\)
Thus,
\(\begin{array}{l} \frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)\frac{{\left( {1 - {\rm{cos}}4{\rm{\omega }}} \right)}}{2}{\rm{\;d\omega }}\\ = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\rm{d\omega }} - \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\rm{cos}}4{\rm{\omega d\omega }} \end{array}\)
We have
\(\frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\rm{d\omega }} = {\rm{x}}\left[ 0 \right] = 8\)
And from the \(\cos 4{\rm{\omega }}\) term
\(\begin{array}{l} \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) \times \left( {\frac{{{{\rm{e}}^{{\rm{j}}4{\rm{\omega }}}} + {{\rm{e}}^{ - {\rm{j}}4{\rm{\omega }}}}}}{2}} \right){\rm{d\omega }}\\ = \frac{1}{2}\left[ {\frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi \;}}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){{\rm{e}}^{{\rm{j}}4{\rm{\omega }}}}{\rm{d\omega }} + \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi \;}}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){{\rm{e}}^{ - {\rm{j}}4{\rm{\omega }}}}{\rm{d\omega }}} \right]\\ = \frac{1}{2}\left[ {{\rm{x}}\left[ 4 \right] + {\rm{x}}\left[ { - 4} \right]} \right] = \frac{1}{2}\left[ {0 + 0} \right] = 0 \end{array}\)
Thus, \(\frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi \;}}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\sin ^2}\left( {2{\rm{\omega }}} \right){\rm{d\omega \;}} = 8 - 0 = 8\)In a discrete-time Low pass Filter, the frequency response is
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 9 Detailed Solution
Download Solution PDFExplanation:
D.T.F.T
Discrete-time Fourier transform is defined by
\(X\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}\)
It is periodic with 2π
Periodicity of DTFT
For any integer k,
\(X\left( {{e^{j\left( {\omega + 2\pi k} \right)}}} \right) = \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\left( {\omega + 2\pi k} \right)n}}\)
\(= \mathop \sum \limits_{n = - \infty }^\infty x\left[ n \right]{e^{ - j\omega n}}{e^{ - j2\pi kn}}\)
\(X\left( {{e^{j\left( {\omega + 2\pi k} \right)}}} \right) = x\left[ n \right]{e^{ - j\omega n}}\)
\(X\left( {{e^{j\left( {\omega + 2\pi k} \right)}}} \right) = X\left( {{e^{j\omega }}} \right)\)
Discrete LPF
Discrete-time LPF is shown below
\(X\left( {\rm{\Omega }} \right) = \left\{ {\begin{array}{*{20}{c}} {1;\;\left| {\rm{\Omega }} \right| \le \omega }\\ {0;else\;\omega < \left| {\rm{\Omega }} \right| \le \pi } \end{array}} \right\}\)
From the response itself, it is clear that the LPF is periodic with 2π as a period.
Properties of Discrete Fourier Transform Question 10:
Consider a discrete-time periodic signal \(\rm x\left[ n \right] = sin\left( {\frac{{\pi n}}{5}} \right)\). Let ak be the complex Fourier Series Coefficient (FSC) of x[n]. ak is non-zero when k = Bm ± 1 , where 'm' is any integer. The value of B is_______.
Answer (Detailed Solution Below) 9.99 - 10.01
Properties of Discrete Fourier Transform Question 10 Detailed Solution
Concept:
The Fourier series representation of discrete time periodic sequence in given by:
\(x\left( n \right) = \mathop \sum \limits_{k = 0}^{N - 1} {a_k}{e^{jk{\omega _0}n}}\)
x(n) = … + a–1 e-jωon + 1 + a1 ejωon + … ---(1)
ak = Fourier series coefficient periodic by N.
ω0 = Fundamental frequency.
Calculation:
\(x\left( n \right) = \sin \left( {\frac{{\pi n}}{5}} \right)\)
The period of the given sequence will be:
\(N = \frac{{2\pi }}{{\pi /5}} = 10\)
So \({\omega _0} = \frac{{2\pi }}{{10}} = \frac{\pi }{5}\)
x(n) can be written as:
\(x\left( n \right) = \frac{1}{{2j}}\left( {{e^{j\frac{\pi }{5} \cdot n\;}} - {e^{ - j\frac{\pi }{5}n}}} \right)\) (Euler’s identity)
\(\Rightarrow \frac{1}{{2j}} \cdot {e^{j\frac{\pi }{5} \cdot n}} - \frac{1}{{2j}} \cdot {e^{ - j\frac{\pi }{5}n}} = \frac{1}{{2j}}{e^{j{\omega _0}n}} = \frac{{ - 1}}{{2j}}\;{e^{ - j{\omega _0}n}}\)
Comparing this with Equation-(1), we get:
\(\Rightarrow {a_{ - 1}} = \frac{{ - 1}}{{2j}}\;\;and\;\;{a_1} = \frac{1}{{2j}}\)
Since the fourier coefficient are periodic,
ak = ak+N
So, a-1 = a-1+10 = a-1+10+10 = a-1+10+10+10 … = a-1+m(10)
For any integer m.
Similarly,
a1 = a1+10 = a1+10+10 = a1+10+10+10 ---- = a1+m(10)
So, ak will be non-zero for k = ± 1 + m(10)
For any other value of k, ak will be zero.
Properties of Discrete Fourier Transform Question 11:
Three DFT coefficient, out of the DFT coefficient of a five-point real sequence are given as:
X(0) = 4, X(1) = 1 – j1 and X(3) = 2 + j2.
The zeroth value of the sequence x(n), i.e. x(0) is
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 11 Detailed Solution
Given:
X(0) = 4, X(1) = 1 – j1
And X(3) = 2 + j2
From property of conjugate symmetry,
X(k) = X* (N – k)
For k = 2 and N = 5,
X(2) = X* (5 – 2) = X* (3)
X(2) = 2 – j2
For k = 4 and N = 5,
X(4) = X* (5 – 4) = X*(1)
X(4) = 1 + j
Inverse discrete Fourier transform of x(n) is given by,
\(x\left( n \right) = \frac{1}{N}\mathop \sum \nolimits_{k = 0}^{N - 1} X\left( k \right){e^{j2\pi nk/N}}\)
For \(n = 0,\;x\left( 0 \right) = \frac{1}{5}\mathop \sum \nolimits_{k = 0}^4 X\left( k \right){e^0}\)
\(x\left( 0 \right) = \frac{1}{5}\left[ {X\left( 0 \right) + X\left( 1 \right) + X\left( 2 \right) + X\left( 3 \right) + X\left( 4 \right)} \right]\)
\(x\left( 0 \right) = \frac{1}{5}\left[ {4 + 1 - j + 2 - j2 + 2 + j2 + 1 + j} \right]\)
x(0) = 2
Properties of Discrete Fourier Transform Question 12:
The first six points of the 8 point DFT of a real-valued sequence are 5, 1 – 3j, 0, 3 – 4j, 0 and 3 + 4j. The last two points of the DFT will be respectively:
Answer (Detailed Solution Below)
Properties of Discrete Fourier Transform Question 12 Detailed Solution
Concept:
N-point DFT of a sequence x(n) defined for n = 0, 1, 2 ... N-1 is given by:
\(X\left( k \right)=\sum_{n=0}^{N-1}x\left( n \right){{e}^{-jk\omega n}}\)
Also If \(x(n)\overset{DFT}{\longleftrightarrow} X(k)\)
The Conjugate symmetric property of DFT states:
X(k) = X*(N – k) 'or' X(N – k) = X*(k)
Calculation:
Given, X(k) = {5, 1 - 3j, 0, 3 – 4j, 0, 3 + 4j, A, B]
Where A and B are the missing variable values.
Using the conjugate symmetric property of DFT: X(k) = X*(N – k)
We find X(6) = A = X*(8 – 6) = X*(2)
With X(2) = 0, X*(2) = 0
So, X(6) = A = 0
Similarly,
B = X(7) = X*(8 – 7) = X*(1)
With, X(1) = 1 – 3j
X(7) = X*(1) = 1+3j
So, A = 0 and B = 1 + 3j
Option (2) is therefore correct.Properties of Discrete Fourier Transform Question 13:
Consider the signal
\(\rm x[n] = 6 \delta[n + 2] + 3\delta[n + 1] + 8\delta[n] + 7\delta[n − 1] + 4\delta[n − 2]\) .
If \(\rm X(e^{j\omega})\) is the discrete-time Fourier transform of \(\rm x[n]\),
then \(\frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\sin ^2}\left( {2{\rm{\omega }}} \right){\rm{d\omega \;}}\) is equal to _________.
Answer (Detailed Solution Below) 8
Properties of Discrete Fourier Transform Question 13 Detailed Solution
\(\frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\sin ^2}\left( {2{\rm{\omega }}} \right){\rm{d\omega }}\)
We have
\({\sin ^2}\left( {2{\rm{\omega }}} \right) = \frac{{1 - \cos 4{\rm{\omega }}}}{2}\)
Thus,
\(\begin{array}{l} \frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right)\frac{{\left( {1 - {\rm{cos}}4{\rm{\omega }}} \right)}}{2}{\rm{\;d\omega }}\\ = \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\rm{d\omega }} - \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\rm{cos}}4{\rm{\omega d\omega }} \end{array}\)
We have
\(\frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\rm{d\omega }} = {\rm{x}}\left[ 0 \right] = 8\)
And from the \(\cos 4{\rm{\omega }}\) term
\(\begin{array}{l} \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi }}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right) \times \left( {\frac{{{{\rm{e}}^{{\rm{j}}4{\rm{\omega }}}} + {{\rm{e}}^{ - {\rm{j}}4{\rm{\omega }}}}}}{2}} \right){\rm{d\omega }}\\ = \frac{1}{2}\left[ {\frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi \;}}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){{\rm{e}}^{{\rm{j}}4{\rm{\omega }}}}{\rm{d\omega }} + \frac{1}{{2{\rm{\pi }}}}\mathop \smallint \limits_{ - {\rm{\pi \;}}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){{\rm{e}}^{ - {\rm{j}}4{\rm{\omega }}}}{\rm{d\omega }}} \right]\\ = \frac{1}{2}\left[ {{\rm{x}}\left[ 4 \right] + {\rm{x}}\left[ { - 4} \right]} \right] = \frac{1}{2}\left[ {0 + 0} \right] = 0 \end{array}\)
Thus, \(\frac{1}{{\rm{\pi }}}\mathop \smallint \limits_{ - {\rm{\pi \;}}}^{\rm{\pi }} {\rm{X}}\left( {{{\rm{e}}^{{\rm{j\omega }}}}} \right){\sin ^2}\left( {2{\rm{\omega }}} \right){\rm{d\omega \;}} = 8 - 0 = 8\)Properties of Discrete Fourier Transform Question 14:
The first six points of an 8 point DFT of a real-valued sequence are 5, 1 – 3j, 0, 3 – 4j, 0 and 3 + 4j. The energy of the sequence given is _____ units.
Answer (Detailed Solution Below) 11.50 - 12.0
Properties of Discrete Fourier Transform Question 14 Detailed Solution
Concept:
N-point DFT of a sequence x(n) defined for n = 0, 1, 2 ---- N-1 is given by:
\(X\left( k \right)=\sum_{n=0}^{N-1} x\left( n \right){{e}^{-jk\omega n}}\)
Also, If \(x(n) \overset{DFT}{\longleftrightarrow} X (k)\)
Then, X(k) = X*(N – k) or X(N – k) = X*(k) (Conjugate symmetric property of DFT)
The energy of a discrete-time sequence is defined as:
\(E=\sum_{N=0}^{N-1}{{x}^{2}}\left( n \right)=\frac{1}{N}\sum_{k=0}^{N-1}{{\left| X\left( k \right) \right|}^{2}}\)
Calculation:
Given, X(k) = {5, 1 - 3j, 0, 3 – 4j, 0, 3 + 4j, A, B]
Where A and B are the missing variable values.
Using the conjugate symmetric property of DFT: X(k) = X*(N – k)
We find X(6) = A = X*(8 – 6) = X*(2)
With X(2) = 0, X*(2) = 0
So, X(6) = A = 0
Similarly,
B = x(7) = X*(8 – 7) = X*(1)
With, X(1) = 1 – 3j
X(7) = X*(1) = 1+3j
So, A = 0 and B = 1 + 3j
X(k) is, therefore:
⇒ X(k) = {5, 1 – 3j, 0, 3 – 4j, 0, 3 + 4j, 0, 1+3j}
Now, the Energy of a discrete-time sequence is defined as:
\(E=\sum_{N=0}^{N-1}{{x}^{2}}\left( n \right)=\frac{1}{N}\sum_{k=0}^{N-1}{{\left| X\left( k \right) \right|}^{2}}\)
The Energy of the given sequence will be;
\(=\frac{1}{8}\sum_{k=0}^{7},{{\left| X\left( k \right) \right|}^{2}}\)
\(=\frac{1}{8}[{{\left| X\left( 0 \right) \right|}^{2}}+{{\left| X\left( 1 \right) \right|}^{2}}+---+{{\left| X\left( 7 \right) \right|}^{2}}]\)
\(=\frac{1}{8}[{{\left( 5 \right)}^{2}}+{{\left| 1-3j \right|}^{2}}+0+{{\left| 3-4j \right|}^{2}}+0+{{\left| 3+4j \right|}^{2}}+0+{{\left| 1+3j \right|}^{2}}]\)
\(=\frac{1}{8}[25+{{\left( \sqrt{10} \right)}^{2}}+{{\left( \sqrt{25} \right)}^{2}}+{{\left( \sqrt{25} \right)}^{2}}+{{\left( \sqrt{10} \right)}^{2}}\)
\(=\frac{1}{8}\left[ 25+10+25+25+10 \right]\)
\(=\frac{95}{8}=11.875\)
Properties of Discrete Fourier Transform Question 15:
Let the impulse response of an LTI system is given as:
\(h\left( n \right) = \frac{{{e^{j\frac{\pi }{2}n}}\sin \left( {n\pi /4} \right)}}{{\left( {\pi n} \right)}}\)
The input x(n) is given as:
\(x\left( n \right) = 10 + 50\cos \left( {\pi n + \frac{\pi }{2}} \right) + 10\sin \left( {\frac{{2\pi n}}{{15}}} \right)\)
The output of the system at n = -1
Answer (Detailed Solution Below) 0
Properties of Discrete Fourier Transform Question 15 Detailed Solution
Analysis:
\(h\left( n \right) = \frac{{{e^{j\frac{\pi }{2}n}}\sin \left( {n\pi /4} \right)}}{{\pi n}}\)
\( = \frac{{{e^{j\frac{\pi }{2}n}}\sin \left( {n\pi /4} \right)}}{{\pi n}} = {e^{j\frac{\pi }{2}n}}{h_1}\left( n \right)\)
As the Fourier transform of a discrete and aperiodic signal is continuous and periodic.
∴ H1(ω) is periodic with a period of 2π.
Now, \({e^{j\frac{\pi }{2}n}}\) shifts the spectrum by \(\frac{\pi }{2}\)
∴ In the output, 10 will not pass.
At n = -1
\(50\cos \left( { - \pi + \frac{\pi }{2}} \right) = 50\cos \left( { - \frac{\pi }{2}} \right) = 0\)
\(\sin \left( {\frac{{ - 2\pi }}{{15}}} \right)\) will not pass.