Properties of Discrete Fourier Transform MCQ Quiz in বাংলা - Objective Question with Answer for Properties of Discrete Fourier Transform - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 20, 2025
Latest Properties of Discrete Fourier Transform MCQ Objective Questions
Top Properties of Discrete Fourier Transform MCQ Objective Questions
Properties of Discrete Fourier Transform Question 1:
\(\rm x[n]\) and \(\rm X[k]\) are \(\rm DFT\) pairs where \(\rm X[k] = DFT [x[n]]\). The period is \(\rm N\). Then \(\rm X[N-k]\) is equal to
Answer (Detailed Solution Below)
\(\rm X^*[k]\)
Properties of Discrete Fourier Transform Question 1 Detailed Solution
By definition
\(\rm \begin{array}{l} X\left[ k \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{ - jk\frac{{2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - j\frac{{\left( {N - k} \right)2\pi n}}{N}}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{jk\frac{{2\pi n}}{N}}}.{e^{ - j2\pi n}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{\frac{{jk2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = {\left( {\mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - jk\frac{{2\pi n}}{N}}}} \right)^*} = {X^*}\left[ k \right] \end{array}\)
Properties of Discrete Fourier Transform Question 2:
\(\rm x\left[ n \right] = \left\{ { - 1,2, - 3,2, - 1} \right\}\)Then the value of \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega \) ____.
Answer (Detailed Solution Below) 358 - 385.5
Properties of Discrete Fourier Transform Question 2 Detailed Solution
\(\rm x[n]\) is discrete and aperiodic \(\rm \Rightarrow X\left( {{e^{j\omega }}} \right)\)is periodic and continuous.
\(\rm X\left( {{e^{j\omega }}} \right)\)is periodic with \(\rm 2π\).
Thus \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {\mathop \smallint \limits_0^{2\pi } {{\left| {X\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega } \right]\)
Now from Parseval’s theorem.
\(\rm \frac{1}{{2\pi }}\mathop \smallint \limits_0^{2\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)
\(\rm \Rightarrow \mathop \smallint \limits_0^{2\pi } {\left| {X\left({e^{j\omega }}\right)} \right|^2}d\omega = 2\pi \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)
\(\rm = 2\pi \left[ {1 + 4 + 9 + 4 + 1} \right]\)
\(\rm = 2\pi .19\)
Now,
\(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {2\pi .19} \right] = 358.14\)