Properties of Discrete Fourier Transform MCQ Quiz in বাংলা - Objective Question with Answer for Properties of Discrete Fourier Transform - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 20, 2025

পাওয়া Properties of Discrete Fourier Transform उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Properties of Discrete Fourier Transform MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Properties of Discrete Fourier Transform MCQ Objective Questions

Top Properties of Discrete Fourier Transform MCQ Objective Questions

Properties of Discrete Fourier Transform Question 1:

\(\rm x[n]\) and \(\rm X[k]\) are \(\rm DFT\) pairs where \(\rm X[k] = DFT [x[n]]\). The period is \(\rm N\). Then \(\rm X[N-k]\) is equal to

  1. \(\rm X[-k]\)

  2. \(\rm X^*[-k]\)

  3. \(\rm X^*[N-k]\)

  4. \(\rm X^*[k]\)

Answer (Detailed Solution Below)

Option 4 :

\(\rm X^*[k]\)

Properties of Discrete Fourier Transform Question 1 Detailed Solution

By definition

\(\rm \begin{array}{l} X\left[ k \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{ - jk\frac{{2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - j\frac{{\left( {N - k} \right)2\pi n}}{N}}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{jk\frac{{2\pi n}}{N}}}.{e^{ - j2\pi n}}\\ \rm = \mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right]{e^{\frac{{jk2\pi n}}{N}}}\\ \rm \Rightarrow X\left[ {N - k} \right] = {\left( {\mathop \sum \limits_{n = 1}^{N - 1} x\left[ n \right].{e^{ - jk\frac{{2\pi n}}{N}}}} \right)^*} = {X^*}\left[ k \right] \end{array}\)

Properties of Discrete Fourier Transform Question 2:

\(\rm x\left[ n \right] = \left\{ { - 1,2, - 3,2, - 1} \right\}\)Then the value of \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega \) ____.

Answer (Detailed Solution Below) 358 - 385.5

Properties of Discrete Fourier Transform Question 2 Detailed Solution

\(\rm x[n]\)  is discrete and aperiodic \(\rm \Rightarrow X\left( {{e^{j\omega }}} \right)\)is periodic and continuous.

\(\rm X\left( {{e^{j\omega }}} \right)\)is periodic with \(\rm 2π\).

Thus \(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {\mathop \smallint \limits_0^{2\pi } {{\left| {X\left( {{e^{j\omega }}} \right)} \right|}^2}d\omega } \right]\)

Now from Parseval’s theorem.

\(\rm \frac{1}{{2\pi }}\mathop \smallint \limits_0^{2\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)

\(\rm \Rightarrow \mathop \smallint \limits_0^{2\pi } {\left| {X\left({e^{j\omega }}\right)} \right|^2}d\omega = 2\pi \mathop \sum \limits_{n = - \infty }^\infty {\left| {x\left[ n \right]} \right|^2}\)

\(\rm = 2\pi \left[ {1 + 4 + 9 + 4 + 1} \right]\)

\(\rm = 2\pi .19\)

Now,

\(\rm \mathop \smallint \limits_0^{6\pi } {\left| {X\left( {{e^{j\omega }}} \right)} \right|^2}d\omega = 3\left[ {2\pi .19} \right] = 358.14\)

Get Free Access Now
Hot Links: teen patti real cash apk teen patti noble teen patti palace teen patti casino download teen patti bindaas