Operations on Matrices MCQ Quiz - Objective Question with Answer for Operations on Matrices - Download Free PDF

Last updated on Apr 22, 2025

Latest Operations on Matrices MCQ Objective Questions

Operations on Matrices Question 1:

Find the values of "a", if the given matrix is singular

\(\rm \begin{bmatrix}\alpha&-1&-3\\\ 3&2&3\\\ 2&1&2\end{bmatrix}\)

  1. -3
  2. +3
  3. +2
  4. -3√2
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : -3

Operations on Matrices Question 1 Detailed Solution

To determine the values of \( a \) that make the given matrix singular, we need to find the determinant of the matrix and set it to zero. A matrix is singular if and only if its determinant is zero. Given the matrix: \[ A = \begin{bmatrix} a & -1 & -3 \\ 3 & 2 & 3 \\ 2 & 1 & 2 \end{bmatrix} \] The determinant of matrix \( A \) can be computed using the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} + (-3) \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = (3 \cdot 2 - 3 \cdot 2) = 6 - 6 = 0 \] \[ \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = (3 \cdot 1 - 2 \cdot 2) = 3 - 4 = -1 \] Substituting these values back into the determinant formula: \[ \text{det}(A) = a \cdot 1 - (-1) \cdot 0 + (-3) \cdot (-1) = a + 0 + 3 = a + 3 \] For the matrix to be singular, the determinant must be zero: \[ a + 3 = 0 \] Solving for \( a \): \[ a = -3 \] Thus, the value of \( a \) that makes the matrix singular is \( -3 \). Therefore, the correct option is option 1. Here is the LaTeX code for the determinant calculation: ```latex \[ \text{det}(A) = a \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} + (-3) \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} \] \[ \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2 - 3 \cdot 1) = 4 - 3 = 1 \] \[ \begin{vmatrix} 3 & 3 \\ 2 & 2 \end{vmatrix} = (3 \cdot 2 - 3 \cdot 2) = 6 - 6 = 0 \] \[ \begin{vmatrix} 3 & 2 \\ 2 & 1 \end{vmatrix} = (3 \cdot 1 - 2 \cdot 2) = 3 - 4 = -1 \] \] \[ \text{det}(A) = a \cdot 1 - (-1) \cdot 0 + (-3) \cdot (-1) = a + 0 + 3 = a + 3 \] \] \[ a + 3 = 0 \implies a = -3 \] ```

Operations on Matrices Question 2:

Let A be a square matrix such that AAT = I. Then \(\frac{1}{2}\)\(\left[(A+A^T)^2+(A-A^T)^2\right]\) is equal to

  1. A2 + I
  2. A3 + I
  3. A2 + AT
  4. A3 + AT
  5. A6 + I

Answer (Detailed Solution Below)

Option 4 : A3 + AT

Operations on Matrices Question 2 Detailed Solution

Calculation

Given

AAT = I = ATA

\(\frac{1}{2}\)\(\left[(A+A^T)^2+(A-A^T)^2\right]\) 

⇒ \(\frac{1}{2}\mathrm{~A}\left[\mathrm{~A}^2+\left(\mathrm{A}^{\mathrm{T}}\right)^2+2\mathrm{AA^T}+\mathrm{A}^2+\left(\mathrm{A}^{\mathrm{T}}\right)^2-2\mathrm{AA^T}\right]\)

 A[A2 + (AT)2] = A3 + AT

Hence option 4 is correct

Operations on Matrices Question 3:

If \(A = \left( {\begin{array}{*{20}{c}} 1&2\\ 2&3\\ 3&4 \end{array}} \right)\) and \(B = \left( {\begin{array}{*{20}{c}} 1&2\\ 2&1 \end{array}} \right),\) then which one of the following is correct?

  1. Both AB and BA exist
  2. Neither AB nor BA exists
  3. AB exists but BA does not exist
  4. AB does not exist but BA exists
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : AB exists but BA does not exist

Operations on Matrices Question 3 Detailed Solution

Concept:

Let A and B be any two matrices of order m × n and p × q respectively. Then the product AB exists if and only if n = p. Similarly, the product BA will exist if and only if q = m.

Calculation:

Given: \(A = \left( {\begin{array}{*{20}{c}} 1&2\\ 2&3\\ 3&4 \end{array}} \right)\) and \(B = \left( {\begin{array}{*{20}{c}} 1&2\\ 2&1 \end{array}} \right)\)

So, order of the matrix A is 3 × 2 whereas the order of the matrix A is 2 × 2.

As we know that, if A and B be any two matrices of order m × n and p × q respectively. Then the product AB exists if and only if n = p

Here, n = 2 = p ⇒ The product AB exists.

As we know that, if A and B be any two matrices of order m × n and p × q respectively. Then the product BA exists if and only if q = m.

Here, q = 2 and m = 3 ⇒ m ≠ q ⇒ The product BA does not exists.

Operations on Matrices Question 4:

Let \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm x + y}& \rm y\\ {\rm 2x}&{\rm x - y} \end{array}} \right],\;\rm B = \left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right]\) and \(\rm C = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right]\). If AB = C, then what is the value of the determinant of the matrix A?

  1. -10
  2. -14
  3. -24
  4. -34
  5. -27

Answer (Detailed Solution Below)

Option 2 : -14

Operations on Matrices Question 4 Detailed Solution

Concept:

The two matrices are equal. Hence, their corresponding elements are also equal.

Calculations:

Given, \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm x + y}& \rm y\\ {\rm 2x}&{\rm x - y} \end{array}} \right],\;\rm B = \left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right]\) and \(\rm C = \left[ {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right]\)

To find the value of the determinant of matrix A, we need to find x and y first.

Given, AB = C

\(\rm \left[ {\begin{array}{*{20}{c}} {\rm x + y}& \rm y\\ {\rm 2x}&{\rm x - y} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2\\ { - 1} \end{array}} \right]=\left[ {\begin{array}{*{20}{c}} 3\\ { 2} \end{array}} \right] \)

\(\rm \left[ {\begin{array}{*{20}{c}} {\rm 2(x + y)-y}\\ {\rm 4x-x+y} \end{array}} \right]=\left[ {\begin{array}{*{20}{c}} 3\\ { 2} \end{array}} \right] \)

\(\rm \left[ {\begin{array}{*{20}{c}} {\rm 2x + y}\\ {\rm 3x+y} \end{array}} \right]=\left[ {\begin{array}{*{20}{c}} 3\\ { 2} \end{array}} \right] \)

The two matrices are equal. Hence, their corresponding elements are also equal.

2x + y = 3....(1)

3x + y = 2....(2)

Solving equation (1) and (2), we get

⇒ x = - 1  and y = 5

Matrix A becomes,\({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm x + y}& \rm y\\ {\rm 2x}&{\rm x - y} \end{array}} \right]\)\(\left[ {\begin{array}{*{20}{c}} {\rm 4}& \rm 5\\ {\rm -2}&{\rm -6} \end{array}} \right]\)

Determinant of A becomes, |A|  = \(\begin{vmatrix} 4 &5 \\ - 2&-6 \end{vmatrix}\) = - 14

Operations on Matrices Question 5:

Consider the following in respect of the matrices  \(\rm P=\begin{bmatrix}0&c&-b\\\ -c&0&a\\\ b&-a&0\end{bmatrix}\ and\ \rm Q=\begin{bmatrix}a^2&ab&ac\\\ ab&b^2&bc\\\ ac&bc&c^2\end{bmatrix}\)

I. PQ is a null matrix. 

II. QP is an identity matrix of order 3. 

III. PQ = QP

Which of the above is/are correct? 

  1. I only 
  2. II only
  3. I and III
  4. II and III

Answer (Detailed Solution Below)

Option 3 : I and III

Operations on Matrices Question 5 Detailed Solution

Concept:

Matrix Multiplication and Properties:

  • Matrix multiplication involves the dot product of rows and columns.
  • A null matrix is a matrix in which all elements are zero.
  • An identity matrix is a square matrix with 1's on the diagonal and 0's elsewhere.
  • For matrices P and Q, PQ = QP does not generally hold unless P and Q commute.

Matrix Definitions:

  • Null Matrix: A matrix where all elements are zero.
  • Identity Matrix: A square matrix with 1's on the main diagonal and 0's elsewhere.

 

Calculation:

\(\rm P=\begin{bmatrix}0&c&-b\\\ -c&0&a\\\ b&-a&0\end{bmatrix}\ and\ \rm Q=\begin{bmatrix}a^2&ab&ac\\\ ab&b^2&bc\\\ ac&bc&c^2\end{bmatrix}\)

⇒ PQ = \(=\begin{bmatrix}0&0&0\\\ 0&0&0\\\ 0&0&0\end{bmatrix}\ \)

⇒QP = \(=\begin{bmatrix}0&0&0\\\ 0&0&0\\\ 0&0&0\end{bmatrix}\ \)

Then PQ = QP

∴ Option (c) is correct

Top Operations on Matrices MCQ Objective Questions

If A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\) is a symmetric matrix then x

  1. 3
  2. 6
  3. 8
  4. 0

Answer (Detailed Solution Below)

Option 2 : 6

Operations on Matrices Question 6 Detailed Solution

Download Solution PDF

Concept:

Symmetric Matrix:

  • Square matrix A is said to be symmetric if the transpose of matrix A is equal to matrix A itself
  • AT = A or A’ = A

Where, AT or A’ denotes the transpose of matrix

  • A square matrix A is said to be symmetric if aij = aji for all i and j

Where aij and aji is an element present in matrix.

 

Calculation:

Given:

A is a symmetric matrix,

⇒ AT = A or aij = aji

A = \(\left[ \begin{matrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \\ \end{matrix} \right]\)

So, by property of symmetric matrices

⇒ a12 = a21

⇒ x – 3 = 3

∴ x = 6

lf the order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3, then the order of (ATB)T C T is

  1. 5 × 3
  2. 4 × 5
  3. 5 × 7
  4. 4 × 3

Answer (Detailed Solution Below)

Option 3 : 5 × 7

Operations on Matrices Question 7 Detailed Solution

Download Solution PDF

Concept:

  • To multiply an m × n matrix by an n × p matrix, the n must be the same, and the result is an m × p matrix.
  • If A be a matrix of order m × n than the order of transpose matrix is n × m

Calculation:

Given:

Order of A is 4 × 3, the order of B is 4 × 5 and the order of C is 7 × 3

The transpose of the matrix obtained by interchanging the rows and columns of the original matrix.

So, order of AT is 3 × 4 and order of CT is 3 × 7

Now,

ATB = {3 × 4} {4 × 5} = 3 × 5

⇒ Order of ATB is 3 × 5

Hence order of (ATB) T is 5 × 3

Now order of (ATB) T C T = {5 × 3} {3 × 7} = 5 × 7

∴ Order of (ATB) T C T is 5 × 7

If \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\) is symmetric, then what is x equal to?

  1. 2
  2. 3
  3. -1
  4. 5

Answer (Detailed Solution Below)

Option 4 : 5

Operations on Matrices Question 8 Detailed Solution

Download Solution PDF

Concept:

Symmetric Matrix: If the transpose of a matrix is equal to itself, that matrix is said to be symmetric.

Or, A matrix A is symmetric if and only if swapping indices doesn't change its components

  • A = AT
  • aij = aji

 

CALCULATION:

Given - \({\rm{A}} = \left( {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right)\)

A real square matrix A = (aij) is said to be symmetric, if A = AT

Where AT = transpose of matrix A

\({{\rm{A}}^{\rm{T}}} = \left( {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right)\)

∴ A = AT

\(\Rightarrow \left[ {\begin{array}{*{20}{c}} 4&{{\rm{x}} + 2}\\ {2{\rm{x}} - 3}&{{\rm{x}} + 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{2{\rm{x}} - 3}\\ {{\rm{x}} + 2}&{{\rm{x}} + 1} \end{array}} \right]\)

Compare A21 element.

⇒ x + 2 =2x - 3 

⇒ x = 5

If A is an Involuntary matrix and I is a unit matrix of same order, then (I − A) (I + A) is

  1. A
  2. I
  3. 2A
  4. Zero matrix

Answer (Detailed Solution Below)

Option 4 : Zero matrix

Operations on Matrices Question 9 Detailed Solution

Download Solution PDF

Concept:

Involuntary matrix:

  • Matrix A is said to be Involuntary if A2 = I, where I is an Identity matrix of same order as of A.
  • Involuntary matrix is a matrix that is equal to its own inverse. ⇔ A-1 = A

 

Calculation:

Given that A is involuntary matrix,

⇒ A2 = I

Now,

(I − A) (I + A) = I2 – IA + AI − A2 

⇒ I – A + A – I         (∵ A2 = I)

0

∴ (I − A) (I + A) is zero matrix.

If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\), then the value of A4 is

  1. \(\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)
  2. \(\left[ {\begin{array}{*{20}{c}} 1&1\\ 0&0 \end{array}} \right]\)
  3. \(\left[ {\begin{array}{*{20}{c}} 0&0\\ 1&1 \end{array}} \right]\)
  4. \(\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

Answer (Detailed Solution Below)

Option 1 : \(\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Operations on Matrices Question 10 Detailed Solution

Download Solution PDF

Calculation:

Given: \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

\({{\rm{A}}^2} = {\rm{AA}} = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&1\\ 1&0 \end{array}} \right]\)

\(\Rightarrow {{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {0 + 1}&{0 + 0}\\ {0 + 0}&{1 + 0} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Now,

\(\Rightarrow {{\rm{A}}^4} = {{\rm{A}}^2}{{\rm{A}}^2} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right] = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right]\)

Hence Option 1st is correct answer.

A square matrix A is called orthogonal if_______ where A’ is the transpose of A.

  1. A = A2
  2. A’ = A-1
  3. A = A-1
  4. A = A’

Answer (Detailed Solution Below)

Option 2 : A’ = A-1

Operations on Matrices Question 11 Detailed Solution

Download Solution PDF

Concept:

Orthogonal matrix: When the product of a matrix to its transpose gives identity matrix.

Suppose A is a square matrix with real elements and of n x n order and AT or A’ is the transpose of A.

AAT = I

Calculation:

Suppose A is a square matrix with real elements and of n x n order and AT or A’ is the transpose of A.

Then according to the definition;

AAT = I

Pre multiplication by A-1

A-1 AAT = A-1 I

IAT = A-1

AT = A-1 or A’ = A-1
then A is orthogonal matrix.

∴ Option 2 is correct

If \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\), then the value of x is

  1. \(\dfrac{23}{2}\)
  2. \(\dfrac{13}{2}\)
  3. \(-\dfrac{13}{2}\)
  4. \(-\dfrac{23}{2}\)

Answer (Detailed Solution Below)

Option 4 : \(-\dfrac{23}{2}\)

Operations on Matrices Question 12 Detailed Solution

Download Solution PDF

Concept:

Matrix Multiplication:

Multiplication is only possible when the number of columns of the first matrix is equal to the number of rows of the second matrix.

A m×n matrix multiplied by a n×p matrix results in a m×p matrix.

Matrices are multiplied by multiplying each element of a row of the first m×n matrix with the corresponding elements of all the columns of the second n×p matrix to obtain the first row of the product matrix with p columns, and so on for all the m rows of the first matrix.

Calculation:

\(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix}\) = [2x - 9   4x + 0]

= [2x - 9   4x]

∴ \(\rm \begin{bmatrix} \rm 2x & 3 \end{bmatrix}\begin{bmatrix} \ \ 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} \rm x \\ 8 \end{bmatrix}=0\)

\(\rm \Rightarrow \begin{bmatrix}\rm 2x-9 & \rm 4x\end{bmatrix}\begin{bmatrix}\rm x \\ 8\end{bmatrix}\) = 0

⇒ [(2x - 9)x + 8×4x] = 0

⇒ [2x2 - 9x + 32x] = 0

⇒ 2x2 + 23x = 0

⇒ x(2x + 23) = 0

⇒ x = 0 or \(\rm -\dfrac{23}{2}\).

If x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)and 2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\), then y is equal to ?

  1. \( \begin{bmatrix} 3 & 11\\ 0 & 7 \end{bmatrix}\)
  2. \( \begin{bmatrix} 3 & 5\\ 0 & -7 \end{bmatrix}\)
  3. \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)
  4. \( \begin{bmatrix} 3 & 5\\ 0 &7 \end{bmatrix}\)

Answer (Detailed Solution Below)

Option 3 : \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)

Operations on Matrices Question 13 Detailed Solution

Download Solution PDF

Calculation:

Given:

x + 2y = \(\begin{bmatrix} 2 & -3\\ 1 & 5 \end{bmatrix}\)                    .... (1)

2x + 5y = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}\)                     .... (2)

Multiplying by 2 in the equation (1), we get

⇒ 2x + 4y = \(\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)             .... (3)

Subtracting equation (3) from equation (2), we get

⇒ (2x + 5y) - (2x + 4y) = \(\begin{bmatrix} 7 & 5\\ 2 & 3 \end{bmatrix}-\begin{bmatrix} 4 & -6\\ 2 & 10 \end{bmatrix}\)

∴ y = \( \begin{bmatrix} 3 & 11\\ 0 & -7 \end{bmatrix}\)

 

If A and B are two matrices such that AB = B and BA = A, then A2 + B2 is equal to

  1. 2AB
  2. 2BA
  3. A + B
  4. AB

Answer (Detailed Solution Below)

Option 3 : A + B

Operations on Matrices Question 14 Detailed Solution

Download Solution PDF

Concept:

The associative property of matrix is given by:

X (YZ) = (XY) Z      ----(1)

Given:

AB = B and BA = A      ----(2)

Calculation:

A2 + B2

⇒ AA + BB

⇒ A (BA) + B (AB)      [using (2)]

⇒ (AB) A + (BA) B      [using (1)]

⇒ BA + AB

⇒ A + B

Hence, A2 + B2 = A + B.

Find the value of x + y, if \(\begin{bmatrix} \rm 2x & 5\\ 7 & \rm -y \end{bmatrix} = \begin{bmatrix} 8 & 5\\7 & 3 \end{bmatrix}\)

  1. 4
  2. 1
  3. -3
  4. 6

Answer (Detailed Solution Below)

Option 2 : 1

Operations on Matrices Question 15 Detailed Solution

Download Solution PDF

Concept:

If two matrices A and B are said to be equal if the following conditions hold true:

  • Order of matrix A = Order of matrix B
  • Corresponding element of matrix A = Corresponding element of matrix B

 

Calculation:

Given: \(\begin{bmatrix} \rm 2x & 5\\ 7 & \rm -y \end{bmatrix} = \begin{bmatrix} 8 & 5\\7 & 3 \end{bmatrix}\)

As we know that, if two matrices A and B are equal then their corresponding elements are also the same.

⇒ 2x = 8 

∴ x = 4

Now,

⇒ -y = 3

∴ y = -3

We have to find the value of x + y

So,  x + y = 4 - 3 = 1

Hence,  option 2 is the correct answer.

Get Free Access Now
Hot Links: teen patti gold new version 2024 teen patti vungo teen patti rummy 51 bonus teen patti party teen patti master 51 bonus