\(\left| {\overrightarrow a } \right|\) = \(\left| {\overrightarrow b } \right|\) = \(\left| {\overrightarrow c } \right|\) மற்றும்   \(\overrightarrow a \, + \,\overrightarrow b \, = \,\,\overrightarrow c \) எனில் \(\overrightarrow a \) மற்றும் \(\overrightarrow b \)  க்கு இடையே உள்ள கோணம்

This question was previously asked in
Rajasthan Gram Vikas Adhikari (VDO) 28 Dec 2021 Shift 2 Official Paper
View all Rajasthan Gram Vikas Adhikari Papers >
  1. \(\frac{{2\pi }}{3}\)
  2. \(\frac{{\pi }}{4}\)
  3. \(\frac{{\pi }}{2}\)
  4. π

Answer (Detailed Solution Below)

Option 1 : \(\frac{{2\pi }}{3}\)
Free
Rajasthan Gram Vikas Adhikari (VDO) : Full Mock Test
29.3 K Users
120 Questions 100 Marks 120 Mins

Detailed Solution

Download Solution PDF

நம்மிடம் இருப்பது,

If, \(\left| {\overrightarrow a } \right|\) = \(\left| {\overrightarrow b } \right|\) = \(\left| {\overrightarrow c } \right|\)

⇒ a = b = c .... (1)

மற்றும்,

\(\overrightarrow a \, + \,\overrightarrow b \, = \,\,\overrightarrow c \) .... (2)

திசையன் கூட்டலின் இணைகர விதி என்ற கருத்தைப் பயன்படுத்தி : இது இரண்டு திசையன் அளவுகளைச் கூட்டப் பயன்படுகிறது.

F1 JItendra.K 11-05-21 Savita D3

 

\(\overrightarrow A \, + \,\overrightarrow B \, = \,\,\overrightarrow R\)

R2 = A2 + B2 + 2AB cos θ 

சமன்பாடு (2) லிருந்து,

c2 = a2 + b2 + 2ab cos θ

எனவே,

a = b = c

ஆதலால்,

a2 = a2 + a2 +2a2 cos θ

அல்லது, a2 = a2 (1 + 1 +2cos θ)

அல்லது, 1 = 2 + 2 cos θ

அல்லது, 2 cos θ = -1

அல்லது, cos θ = (-0.5)

Hence, θ = cos-1 (0.5) = 120° = \(\frac{{2\pi }}{3}\)

 

 

 

Latest Rajasthan Gram Vikas Adhikari Updates

Last updated on Jun 11, 2025

->The Rajasthan Gram Vikas Adhikari Recruitment 2025 Notification is expected soon in the upcoming months.

->The Tentative Exam Date for Rajasthan Gram Vikas Adhikari 2025 Recruitment is 31st August 2025.

->The Rajasthan Gram Vikas Adhikari Selection Process consist of two stages i.e, Preliminary Test & Mains Examination.

->Candidates who are interested to prepare for the examination can refer to the Rajasthan Gram Vikas Adhikari Previous Year Question Paper here!

More Vector Algebra Questions

Get Free Access Now
Hot Links: real teen patti teen patti rummy teen patti rummy 51 bonus teen patti 50 bonus teen patti king