How many real roots does the polynomial x3 + 3x − 2023 have?

This question was previously asked in
CSIR UGC (NET) Mathematical Science: Held On (7 June 2023)
View all CSIR NET Papers >
  1. 0
  2. 1
  3. 2
  4. 3

Answer (Detailed Solution Below)

Option 2 : 1
Free
Seating Arrangement
3.4 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept: 

Every odd degree polynomial p(x) ∈ R(x) has at least a real root

Explanation:

p(x) = x3 + 3x − 2023

p'(x) = 3x2 + 3

Since x2 ≥ 0 for all x so

3x2 + 3 > 0 ⇒ p'(x) > 0

Therefore p'(x) has no real roots

We know that between two distinct real roots of p(x) there exist a real root of p'(x).

Since here p'(x) no real roots, so p(x) can't have more than one real root

Option (2) correct

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Analysis Questions

Get Free Access Now
Hot Links: teen patti flush teen patti 100 bonus teen patti gold teen patti 3a dhani teen patti