Question
Download Solution PDFHow many real roots does the polynomial x3 + 3x − 2023 have?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFConcept:
Every odd degree polynomial p(x) ∈ R(x) has at least a real root
Explanation:
p(x) = x3 + 3x − 2023
p'(x) = 3x2 + 3
Since x2 ≥ 0 for all x so
3x2 + 3 > 0 ⇒ p'(x) > 0
Therefore p'(x) has no real roots
We know that between two distinct real roots of p(x) there exist a real root of p'(x).
Since here p'(x) no real roots, so p(x) can't have more than one real root
Option (2) correct
Last updated on Jun 5, 2025
-> The NTA has released the CSIR NET 2025 Notification for the June session.
-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025
-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences.
-> Postgraduates in the relevant streams can apply for this exam.
-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.