\(\rm \vec a = -4\hat i + 2\hat j\)\(\rm \vec b =2\hat i + \hat j\) और \(\rm \vec c = 2\hat i + 3\hat j\) सदिशों के लिए, यदि \(\rm \vec c = m\vec a + n\vec b\), तो m + n का मान क्या होगा?

This question was previously asked in
NIMCET 2014 Official Paper
View all NIMCET Papers >
  1. \(\frac{1}{2}\)
  2. \(\frac{3}{2}\)
  3. \(\frac{5}{2}\)
  4. \(\frac{7}{2}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{5}{2}\)
Free
NIMCET 2020 Official Paper
10.7 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

यदि दो सदिश \(\rm \vec a = {a_1}\hat i + {a_2}\hat j+{a_3}\hat k\) और \(\rm \vec b = {b_1}\hat i + {b_2}\hat j+{b_3}\hat k\) समान हैं, तो

a1 = b1, a2 = b2 और c1 = c2 है

 

गणना:

हमारे पास \(\rm \vec c = m\vec a + n\vec b\)है

⇒ 2î + 3ĵ = m(-4î + 2ĵ) + n(2î + ĵ)

⇒ 2î + 3ĵ = (-4m + 2n)î + (2m + n)ĵ

अदिश गुणांकों कों बराबर करके, हम प्राप्त करते हैं:

-4m + 2n = 2               ... (1)

2m + n = 3               ... (2)

समीकरण (2) को 2 से गुणा करके और समीकरण (1) में जोड़कर, हमें मिलता है:

4n = 8

⇒ n = 2

उपरोक्त समीकरणों में से किसी एक का उपयोग करते हुए, हमें यह भी मिलता है:

m = \(\frac12\)

∴ m + n = 2 + \(\frac12\)\(\frac{5}{2}\)

Latest NIMCET Updates

Last updated on Jun 12, 2025

->The NIMCET 2025 provisional answer key is out now. Candidates can log in to the official website to check their responses and submit objections, if any till June 13, 2025.

-> NIMCET exam was conducted on June 8, 2025.

-> NIMCET 2025 admit card was out on June 3, 2025.

-> NIMCET 2025 results will be declared on June 27, 2025. Candidates are advised to keep their login details ready to check their scrores as soon as the result is out.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Types of Vectors Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: master teen patti teen patti master 51 bonus online teen patti