Boolean Algebra MCQ Quiz in తెలుగు - Objective Question with Answer for Boolean Algebra - ముఫ్త్ [PDF] డౌన్‌లోడ్ కరెన్

Last updated on Mar 14, 2025

పొందండి Boolean Algebra సమాధానాలు మరియు వివరణాత్మక పరిష్కారాలతో బహుళ ఎంపిక ప్రశ్నలు (MCQ క్విజ్). వీటిని ఉచితంగా డౌన్‌లోడ్ చేసుకోండి Boolean Algebra MCQ క్విజ్ Pdf మరియు బ్యాంకింగ్, SSC, రైల్వే, UPSC, స్టేట్ PSC వంటి మీ రాబోయే పరీక్షల కోసం సిద్ధం చేయండి.

Latest Boolean Algebra MCQ Objective Questions

Top Boolean Algebra MCQ Objective Questions

Boolean Algebra Question 1:

If r ∈ {p, q, ~p, ~q} such that the Boolean expression (~(p ∨ q)) ∨ (p ∧ q) is equivalent to r, then r is equal to

  1. p
  2. q
  3. ~p
  4. ~q

Answer (Detailed Solution Below)

Option 3 : ~p

Boolean Algebra Question 1 Detailed Solution

Concept:

~ ( p ∨ q) = ∼ p ∧ ∼q

Calculation:

Given:

The Boolean expression 

~ ( p ∨ q) ∨ (∼ p ∧ q) = r

Taking LHS

= (∼ p ∧ ∼ q) ∨ (∼p ∧ q)

= (∼ p ∧∼ q) ∨ (∼p ∧ q)

Taking ∼p common

= (∼ p) ∧ (∼q ∨ q)

r = ∼ p

So r is equal to ∼p.

Boolean Algebra Question 2:

Consider following gates :

1. NAND

2. NOR

3. XOR

Out of these gates, the universal gates are

  1. 1 and 3 only
  2. 2 and 3 only
  3. 1 and 2 only
  4. 1, 2 and 3

Answer (Detailed Solution Below)

Option 3 : 1 and 2 only

Boolean Algebra Question 2 Detailed Solution

A Universal Gate is a gate by which every other gate can be realized.

AND, OR, NOT, etc. are basic gates.

NAND, NOR, etc. are the universal gate.

Example:

NOT, AND and OR gate realization using NAND gate is as shown:

F1 S.B Madhu 18.03.20 D5

Boolean Algebra Question 3:

The Boolean function a + (a̅ b) is equivalent to

  1. a.b
  2. a + b
  3. a.b̅
  4. a̅ + b

Answer (Detailed Solution Below)

Option 2 : a + b

Boolean Algebra Question 3 Detailed Solution

Calculation:

y = a + a̅ b

⇒ y = (a + a̅) (a + b)

Because, we have,

y = aa + ab + a̅ a + a̅ b

y = a + ab + a̅ b

y = a (1 + b) + a̅ b

y = a + a̅ b

Therefore, now consider,

y = (a + a̅) (a + b)

y = (1)  (a + b)

∴ y = a + b

Boolean Algebra Question 4:

Consider the Boolean function f = (a + bc)⋅(pq + r). Complement f' of function f is:

  1. (a' + b'c') ⋅ (p'q' + r')
  2. a'(b' + c') + (p' + q')r'
  3. (a' + b'c') + (p'q' + r')
  4. (a'b'c') + (p'q'r')

Answer (Detailed Solution Below)

Option 2 : a'(b' + c') + (p' + q')r'

Boolean Algebra Question 4 Detailed Solution

By using Demorgan's law:

(A + B)' = A'.B' and (A.B)' = A' + B'

Boolean function f = (a + bc)⋅(pq + r).

f = (a + bc)⋅(pq + r)

f = ((a + bc)⋅(pq + r))'

f = (a + bc)' + (pq + r)'

f = a'.(bc)' + (pq)'.r'

f = a'.(b' + c') + (p' + q').r'

(a + bc). (pq + r) =  a'(b' + c') + (p' + q').r'

Therefore option 2 is correct.

Boolean Algebra Question 5:

If f(x) = \(\frac{{3{\rm{x\;}} + {\rm{\;}}2}}{{4{\rm{x\;}}-{\rm{\;}}1}}\) and g(x) = \(\frac{{{\rm{x\;}} + {\rm{\;}}2}}{{4{\rm{x}} - {\rm{\;}}3}}\) then

I. fog(x) = 2x

II. gof(x) = x

  1. Only I
  2. Only II
  3. Both I and II
  4. None

Answer (Detailed Solution Below)

Option 2 : Only II

Boolean Algebra Question 5 Detailed Solution

fog(x) = f(g(x)) = \(\frac{{3\frac{{x\; + \;2}}{{4x - 3}}{\rm{\;}} + {\rm{\;}}2}}{{4\frac{{x + \;2}}{{4x\; - 3}}{\rm{\;}}-{\rm{\;}}1}}\) = \(\frac{{11x}}{{11}}\) = x

gof(x) = g(f(x)) = \(\frac{{\frac{{3x\; + \;2}}{{4x - 1}}{\rm{\;}} + {\rm{\;}}2}}{{4\frac{{3x + 2}}{{4x\; - \;1}} - {\rm{\;}}3}}\) = \(\frac{{11x}}{{11}}\) = x

Boolean Algebra Question 6:

Let ⊕ and ⊙ denote the Exclusive OR and Exclusive NOR operations, respectively.

Which one of the following is NOT CORRECT?

  1. \(\overline{{(P⊕Q)}} =P⊙Q\)
  2. \(\bar P⊕Q=P⊙Q\)
  3. \(\bar P ⊕\bar Q =P⊕Q\)
  4. \((P⊕\bar P)⊕Q=(P⊙\bar P)⊙\bar Q\)

Answer (Detailed Solution Below)

Option 4 : \((P⊕\bar P)⊕Q=(P⊙\bar P)⊙\bar Q\)

Boolean Algebra Question 6 Detailed Solution

The correct answer is option 4

Calculation:

LHS = (P ⊕ P̅) ⊕ Q=1 ⊕ Q=Q̅

RHS = (P ⊙ P̅) ⊙ Q̅= 0 ⊙ Q̅ =Q

Hence LHS is not equal to RHS in option 4

Boolean Algebra Question 7:

Comprehension:

Next five questions are based on the following passage.

Consider a domain consisting of three Boolean variables ToothacheCavity, and Catch. The full joint distribution is a 2 × 2 × 2 table as shown in the figure below.

  toothache ¬toothache
  catch ¬catch catch ¬catch
cavity 0.108 0.012 0.072 0.008
¬cavity 0.016  0.064 0.144  0.576

The marginal probability of cavity P(cavity) is ________.

  1. 0.200
  2. 0.216
  3. 0.120
  4. 0.080

Answer (Detailed Solution Below)

Option 1 : 0.200

Boolean Algebra Question 7 Detailed Solution

The correct answer is option 1.

 Solution :

  P(cavity )= 0.108+0.012+0.072+0.08 = 0.200       

qImage65a7adc73a71abeb635bf184

  Note : P(cavity) means the probability value where cavity is found irrespective of any other value.

Boolean Algebra Question 8:

Which of the following Boolean rules is correct?

  1. A + 0 = 0
  2. A + 1 = 1
  3. \(\overline {A + A} = \overline {A.A}\)
  4. \(A + A.B = \overline {A+B}\)

Answer (Detailed Solution Below)

Option 2 : A + 1 = 1

Boolean Algebra Question 8 Detailed Solution

Concept:

All Boolean algebra laws are shown below

Name

AND Form

OR Form

Identity law

1.A = A

0 + A = A

Null Law

0.A = 0

1 + A = 1

Idempotent Law

A. A = A

A + A = A

Inverse Law

AA’ = 0

A + A’ = 1

Commutative Law

AB = BA

A + B = B + A

Associative Law

(AB)C

(A + B) + C = A + (B + C)

Distributive Law

A + BC = (A + B) (A + C)

A (B + C) = AB + AC

Absorption Law

A (A + B) = A

A + AB = A

De Morgan’s Law

(AB)’ = A’ + B’

(A + B)’ = A’B’

 

Boolean Algebra Question 9:

Boolean expression y.z + z is equal to which of the following?

  1. y + y.z
  2. y + z
  3. z
  4. y.z

Answer (Detailed Solution Below)

Option 3 : z

Boolean Algebra Question 9 Detailed Solution

y.z + z =  z.(y+1) =z.1  / using Annulment Law  

So option 3 will be correct

Boolean Algebra Question 10:

Which of the following is not a valid expression of Boolean Algebra?

  1. x + x.y = x
  2. x'.y + x.y = y
  3. x'.y' + x.y = x
  4. (x + y + z)' = x'.y'.z'

Answer (Detailed Solution Below)

Option 3 : x'.y' + x.y = x

Boolean Algebra Question 10 Detailed Solution

Option 1 : x + x.y = x 

LHS = x + x.y = x(1 + y) = x.1 = x   / Boolen Expression law

Option 2 : x'.y+x.y=y

LHS =x'.y+x.y = y(x'+x)=y(1)=y / Boolen Expression law

Option 3 :x'.y'+x.y=x

XNOR(x, y) = x ⊙ y = x.y + x'.y' / Exclusive NOR Rule

Option 4 : (x + y + z)' = x'.y'.z'

(x + y + z)' = x'.y'.z' / Folloe Demorgan's Law

So the correct Answer is Option 3

 

Get Free Access Now
Hot Links: teen patti octro 3 patti rummy all teen patti game teen patti real