Integral Calculus MCQ Quiz in मराठी - Objective Question with Answer for Integral Calculus - मोफत PDF डाउनलोड करा

Last updated on Apr 13, 2025

पाईये Integral Calculus उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Integral Calculus एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Integral Calculus MCQ Objective Questions

Top Integral Calculus MCQ Objective Questions

Integral Calculus Question 1:

Double integal \(\int_0^2\int_0^{\sqrt{2x-x^2}}\frac{xdydx}{\sqrt{x^2+y^2}}\) equals:

  1. \(\frac{2}{3}\)
  2. \(\frac{4}{3}\)
  3. \(\frac{1}{3}\)
  4. \(\frac{8}{3}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{4}{3}\)

Integral Calculus Question 1 Detailed Solution

Explanation:

\(I = \int_0^2\int_0^{\sqrt{2x-x^2}}\frac{xdydx}{\sqrt{x^2+y^2}}\)

Bounded region

⇒ x = 0 to x = 2 and y = 0 to y = \({\sqrt{2x-x^2}}\)

⇒ y2 = 2x - x2 ⇒ \(x^2-2x+y^2 = 0 \implies (x-1)^2 +y^2 = 1\)

convert into polar form 

\(\implies x= rcos\theta , y = r sin\theta\)

⇒    \((x - 1)^2 + y^2 = 1 \implies (r \cos \theta - 1)^2 + (r \sin \theta)^2 = 1 \\ r^2 \cos^2 \theta - 2r \cos \theta + 1 + r^2 \sin^2 \theta = 1\\ r = 0\\ r = 2 \cos \theta\)

\(0 \leq \theta \leq \frac{\pi}{2}\)

⇒ \(I = \int_{0}^{\frac{\pi}{2}}\int_{0}^{2cos\theta} (\frac{rcos\theta}{r})rdrd\theta\)

\(\implies I = \int_{0}^{\frac{\pi}{2}}cos\theta \int_{0}^{2cos\theta}rdr d\theta\)

\(\implies I = 2\int_{0}^{\frac{\pi}{2}}cos^3\theta d\theta\)

\(W_n = \int_0^{\pi/2} \cos^n \theta \, d\theta \)  

1. For even n :

\(\int_0^{\pi/2} \cos^n \theta \, d\theta = \frac{(n-1)(n-3)(n-5) \dots 1}{n(n-2)(n-4) \dots 2} \times \frac{\pi}{2} \)   

​​​​2. For odd n :

\(\int_0^{\pi/2} \cos^n \theta \, d\theta = \frac{(n-1)(n-3)(n-5) \dots 2}{n(n-2)(n-4) \dots 1} \)  

\(\implies \int_0^{\pi/2} \cos^3 \theta \, d\theta = \frac{2}{3} \)

⇒ I = \(2\times\frac{2}{3} = \frac{4}{3}\)

Hence option 2 is correct

Integral Calculus Question 2:

The integral \(\rm \int_0^1\int_0^x (x^2+y^2)dydx\) is

  1. \(\frac{1}{6}\)
  2. \(\frac{1}{2}\)
  3. \(\frac{1}{3}\)
  4. 1

Answer (Detailed Solution Below)

Option 3 : \(\frac{1}{3}\)

Integral Calculus Question 2 Detailed Solution

Explanation:

\(I = \int_{0}^{1}\int_{0}^{x}(x^2 + y^2)dydx\)

Compute integral.

⇒   \( \int_{0}^{1}\int_0^x (x^2 + y^2) \, dydx = \int_{0}^{1}(x^2y+\frac{y^3}{3})_{0}^{x}dx \)

⇒  \(\int_{0}^{1}(x^3 + \frac{x^3}{3}) = \int_0^1\frac{4x^3}{3}dx\)

⇒  \(\frac{4}{3}(\frac{x^4}{4})_0^1 = \frac{1}{3}(1^4-0^4) = \frac{1}{3}\)

Hence option 3  is correct. 

Get Free Access Now
Hot Links: teen patti 100 bonus teen patti game paisa wala teen patti rich teen patti - 3patti cards game downloadable content