Cramer's Rule MCQ Quiz in मल्याळम - Objective Question with Answer for Cramer's Rule - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 21, 2025

നേടുക Cramer's Rule ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Cramer's Rule MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Cramer's Rule MCQ Objective Questions

Top Cramer's Rule MCQ Objective Questions

Cramer's Rule Question 1:

2x – 3y = 0 and 2x + αy = 0

For what value of α the system has infinitely many solution.

  1. α ≠ 3
  2. α = 2
  3. α ≠ 2
  4. α = -2
  5. α = -3

Answer (Detailed Solution Below)

Option 5 : α = -3

Cramer's Rule Question 1 Detailed Solution

Concept:

The system of equations A X = 0 is said to be homogenous system of equations, then

If |A| ≠ 0, then its solution X = 0, is called trivial solution.

If |A| = 0. Then A X = 0 has a non-trivial solution which means the system will have infinitely many solutions.

Calculation:

Given:  2x – 3y = 0 and 2x + αy = 0

These equations can be written as: A X = B where \(A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}\\ 2&\alpha \end{array}} \right],\;X = \left[ {\begin{array}{*{20}{c}} x\\ y \end{array}} \right]\;and\;B = \left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]\)

As we know that, the given system is a homogenous system of equation. So, in order to say that the system has infinitely many solutions: |A| = 0.

⇒ |A| = 2α + 6 = 0 ⇒ α = -3.

Cramer's Rule Question 2:

The system of equations

x + y + z = 6,

x + 2y + 5z = 9,

x + 5y + λz = µ,

has no solution if 

  1. λ = 17, µ ≠ 18
  2. λ ≠ 17, µ ≠ 18
  3. λ = 15, µ ≠ 17
  4. λ = 17, µ = 18 

Answer (Detailed Solution Below)

Option 1 : λ = 17, µ ≠ 18

Cramer's Rule Question 2 Detailed Solution

Calculation

\(D=\left|\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 5 & λ \end{array}\right|=0\)

⇒ λ = 17

\(D_{z}=\left|\begin{array}{lll} 1 & 1 & 6 \\ 1 & 2 & 9 \\ 1 & 5 & μ \end{array}\right| ≠ 0\)

⇒ μ ≠ 18

Hence option 1 is correct

Cramer's Rule Question 3:

Consider the system of equations: x + y + z = 3, x – y + 2z = 6 and x + y + α z = β

For what value of α and β the system has infinitely many solutions.

  1. α = 1 and β = 3
  2. α =- 1 and β = -3
  3. α = -1 and β = 3
  4. α = 1 and β =- 3
  5. None of these

Answer (Detailed Solution Below)

Option 1 : α = 1 and β = 3

Cramer's Rule Question 3 Detailed Solution

Concept:

Let us consider a system of equations in three variables:

a1 × x + b1 × y + c1 × z = d1

a2 × x + b2 × y + c2 × z = d2

a3 × x + b3 × y + c3 × z = d3

Then, \({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;\;{{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;{{\rm{\Delta }}_2} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{d_1}}&{{c_1}}\\ {{a_2}}&{{d_2}}&{{c_2}}\\ {{a_3}}&{{d_3}}&{{c_3}} \end{array}} \right|\;and\;{{\rm{\Delta }}_3} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{d_1}}\\ {{a_2}}&{{b_2}}&{{d_2}}\\ {{a_3}}&{{b_3}}&{{d_3}} \end{array}} \right|\)

By cramer’s rule:

I. If Δ ≠ 0, then the system of equation has unique solution and it is given by: \(x = \frac{{{{\rm{\Delta }}_1}}}{{\rm{\Delta }}},\;y = \frac{{{{\rm{\Delta }}_2}}}{{\rm{\Delta }}}\;and\;z = \frac{{{{\rm{\Delta }}_3}}}{{\rm{\Delta }}}\)

II. If Δ = 0 and atleast one of the determinants Δ, Δ1, Δ2 and Δ3 is non-zero, then the given system is inconsistent.

III. If Δ = 0 and Δ1 =  Δ2 =  Δ3 = 0, then the system is consistent and has infinitely many solutions.

Calculation:

Given: x + y + z = 3, x – y + 2z = 6 and x + y + α z = β.

As we know that,

\({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;{{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right|,\;{{\rm{\Delta }}_2} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{d_1}}&{{c_1}}\\ {{a_2}}&{{d_2}}&{{c_2}}\\ {{a_3}}&{{d_3}}&{{c_3}} \end{array}} \right|\;and\;{{\rm{\Delta }}_3} = \;\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{d_1}}\\ {{a_2}}&{{b_2}}&{{d_2}}\\ {{a_3}}&{{b_3}}&{{d_3}} \end{array}} \right|\)

\( \Rightarrow {\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} 1&1&1\\ 1&{ - 1}&2\\ 1&1&\alpha \end{array}} \right|,\;{{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} 3&1&1\\ 6&{ - 1}&2\\ \beta &1&\alpha \end{array}} \right|,\;{{\rm{\Delta }}_2} = \;\left| {\begin{array}{*{20}{c}} 1&3&1\\ 1&6&2\\ 1&\beta &\alpha \end{array}} \right|\;and\;{{\rm{\Delta }}_3} = \;\left| {\begin{array}{*{20}{c}} 1&1&3\\ 1&{ - 1}&6\\ 1&1&\beta \end{array}} \right|$\)

⇒ Δ = 2 – 2α, Δ1 = 3β – 9α, Δ2 =  3α - β and Δ3 = 6 – 2β.

As we know that, for the given system of equation to have infinitely many solutions according to cramer’s rule: Δ = 0 and Δ1 =  Δ2 =  Δ3 = 0

⇒ Δ = 2 – 2α = 0 ⇒ α = 1.

For α = 1 , we have: Δ1 = 3β – 9, Δ2 =  3 – β and Δ3 =  6 – 2β

So, in order to have infinitely many solutions, Δ1 =  Δ2 =  Δ3 = 0.

⇒ β = 3.

Cramer's Rule Question 4:

Find the value of α and β such the system of equations: 4x + y = α and βx + 2y = 3 has no solution.

  1. α = 1 and β = 8 
  2. α = 3 / 2 and β = 8
  3. α = 1 and β = 3
  4. None of these

Answer (Detailed Solution Below)

Option 4 : None of these

Cramer's Rule Question 4 Detailed Solution

Concept:

Let us consider a system of equations in two variables:

a1 × x + b1 × y = c1

a2 × x + b2 × y = c2

Then, \({\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}\\ {{a_2}}&{{b_2}} \end{array}} \right|,\;{{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} {{c_1}}&{{b_1}}\\ {{c_2}}&{{b_2}} \end{array}} \right|\;and\;{{\rm{\Delta }}_2} = \left| {\begin{array}{*{20}{c}} {{a_1}}&{{c_1}}\\ {{a_2}}&{{c_2}} \end{array}} \right|\)

By Cramer's rule, the solution of a system of the equation has a unique solution if Δ ≠ 0 and the solution is given by: \(x = \frac{{{{\rm{\Delta }}_1}}}{{\rm{\Delta }}}\;and\;y = \frac{{{{\rm{\Delta }}_2}}}{{\rm{\Delta }}}\)

By cramer’s rule:

I. If Δ ≠ 0, then the system of the equation has a unique solution and it is given by: \(x = \frac{{{{\rm{\Delta }}_1}}}{{\rm{\Delta }}},\;y = \frac{{{{\rm{\Delta }}_2}}}{{\rm{\Delta }}}\;and\;z = \frac{{{{\rm{\Delta }}_3}}}{{\rm{\Delta }}}\)

II. If Δ = 0 and at least one of the determinants Δ, Δ1, Δ2, and Δ3 is non-zero, then the given system is inconsistent.

III. If Δ = 0 and Δ1 =  Δ2 =  Δ3 = 0, then the system is consistent and has infinitely many solutions.

Calculation:

Given: 4x + y = α and βx + 2y = 3

As we know that, the given system of equation will be inconsistent if if Δ = 0 and at least one of the determinants Δ1 and Δ2 is non-zero.

\(⇒ {\rm{\Delta }} = \left| {\begin{array}{*{20}{c}} 4&1\\ β &2 \end{array}} \right| = 8 - β \)

∵ The given system has no solution

⇒ Δ = 8 - β = 0 ⇒ β = 8.

\( \Rightarrow {{\rm{\Delta }}_1} = \left| {\begin{array}{*{20}{c}} α &1\\ 3&2 \end{array}} \right| = 2α - 3\;and\;{{\rm{\Delta }}_2} = \left| {\begin{array}{*{20}{c}} 4&α \\ {8}&3 \end{array}} \right| = 12 - 8α \)

So, for α = 3 / 2, we can see that both Δ1 and Δ2 are zero.

for α = 3 / 2 and β = 8 the given system is consistent and has infinitely many solutions.

Hence, option 4 is correct.

Cramer's Rule Question 5:

The system of simultaneous linear equations x - 2y + 3z = 4, 3x + y - 2z = 7, 2x + 3y + z = 6 has

  1. Infinitely many solutions 
  2. No solution 
  3. Unique solution having z = 2
  4. Unique solution having \(z = \frac{1}{2} \)

Answer (Detailed Solution Below)

Option 4 : Unique solution having \(z = \frac{1}{2} \)

Cramer's Rule Question 5 Detailed Solution

Calculation

Given:

The system of simultaneous linear equations:

\(x - 2y + 3z = 4\)

\(3x + y - 2z = 7\)

\(2x + 3y + z = 6\)

\(D = \begin{vmatrix} 1 & -2 & 3 \\ 3 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}\)

\(D = 1(1+6) - (-2)(3+4) + 3(9-2)\)

\(D = 7 + 14 + 21 = 42\)

Since \(D \neq 0\), the system has a unique solution.

\(D_z = \begin{vmatrix} 1 & -2 & 4 \\ 3 & 1 & 7 \\ 2 & 3 & 6 \end{vmatrix}\)

\(D_z = 1(6-21) - (-2)(18-14) + 4(9-2)\)

\(D_z = -15 + 8 + 28 = 21\)

\(z = \frac{D_z}{D} = \frac{21}{42} = \frac{1}{2}\)

Thus, we have a unique solution with \(z = \frac{1}{2}\).

Hence option 4 is correct

Cramer's Rule Question 6:

The value of \(a\) for which the system of equations

\(a^3x+(a+1)^3y+(a+2)^3z=0\)

\(ax+(a+1)y+(a+2)z=0\)

\(x+y+z=0\)

has a non-zero solution is

  1. \(1\)
  2. \(0\)
  3. \(-1\)
  4. None of these

Answer (Detailed Solution Below)

Option 3 : \(-1\)

Cramer's Rule Question 6 Detailed Solution

Calculation

For non-zero solution,

\(\begin{vmatrix}a^3&(a+1)^3 &(a+2)^3 \\a &(a+1)&(a+2)\\1&1&1 \end{vmatrix}=0\)

\(\Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ a & (a+1) & (a+2) \\ a^{ 3 } & (a+1)^{ 3 } & (a+2)^{ 3 } \end{vmatrix}=0\)

Since \(\begin{vmatrix} 1 & 1 & 1 \\ x& y & z \\ x^{ 3 } & y^{ 3 } & z^{ 3 } \end{vmatrix}=\)(xy)(yz)(zx)(x+y+z)

\(\Rightarrow -(a-a-1)(a+1-a-2)(a+2-a)\times (a+a+1+a+2)=0\)

\(\Rightarrow -2(3a+3)=0\)

\(\Rightarrow a=-1\)

Hence option 3 is correct

Get Free Access Now
Hot Links: teen patti gold new version teen patti octro 3 patti rummy teen patti master update teen patti 50 bonus