Partial Differential Equations MCQ Quiz - Objective Question with Answer for Partial Differential Equations - Download Free PDF

Last updated on Jul 7, 2025

Latest Partial Differential Equations MCQ Objective Questions

Partial Differential Equations Question 1:

Let u = u(x, y) be the solution of the boundary value problem 

\(\rm \frac{\partial ^2u}{\partial x^2}+\rm \frac{\partial ^2u}{\partial y^2}=0\), (x, y) ∈ (0, 1) × (0, 1)

u(x, 0) = eπx, u(x, 1) = -eπx, x ∈ [0, 1]

u(0, y) = cos (πy) + sin (πy), y ∈ [0, 1]

u(1, y) = eπ (cos (πy) + sin (πy)), y ∈ [0, 1]

Then there exists a point (x0, y0) ∈ (0, 1) × (0, 1) such that

  1. u(x0, y0) = √2 eπ 
  2. u(x, y0) = eπ
  3. u(x0, y0) = -1
  4. u(x0, y0) = -eπ

Answer (Detailed Solution Below)

Option :

Partial Differential Equations Question 1 Detailed Solution

We will update the solution soon.

Partial Differential Equations Question 2:

Let u = u(x, t) be the solution of the initial-boundary 

\(\rm \frac{\partial u}{\partial t}=\frac{\partial ^2u}{\partial x^2}(x,t)∈ (0, 1) \times (0, ∈fty)\)

u(x, 0) = 4x (1 - x), x ∈ [0, 1]

u(0, t) = u(1, t) = 0, t ≥ 0

Then which of the following statements are true? 

  1. \(\lim_{t\rightarrow \infty}u(x,t)=0 for\ all\ x \in (0, 1)\)
  2. u(x,.t) = u(1 - x, t) for all x ∈ (0, 1), t > 0
  3. \(\int_0^1(u(x,t)^2dx\) is a non-increasing function of t
  4. \(\int_0^1(u(x,t)^2dx\) is a non-decreasing function of t 

Answer (Detailed Solution Below)

Option :

Partial Differential Equations Question 2 Detailed Solution

Concept:

Heat Equation and Energy Dissipation:

  • The equation \( \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \) is the 1D heat equation on a rod of length 1.
  • \( u(x,t) \) represents the temperature at position \( x \in (0,1) \) and time \( t \geq 0 \).
  • The initial condition is \( u(x,0) = 4x(1 - x) \), a parabola symmetric about \( x = \frac{1}{2} \).
  • The boundary conditions are \( u(0,t) = u(1,t) = 0 \), which represent a rod with both ends kept at 0 temperature.
  • Heat equation with Dirichlet boundary conditions preserves the symmetry of initial data.
  • Over time, the heat dissipates ⇒ solution decays to zero.
  • \( \int_0^1 u(x,t)^2 dx \) is called the energy functional, and it decreases with time.

 

Calculation:

Given,

Initial condition: \( u(x,0) = 4x(1-x) \)

Boundary: \( u(0,t) = u(1,t) = 0 \)

⇒ Solution decays to zero as heat dissipates over time

\( \lim_{t \to \infty} u(x,t) = 0 \) for all \( x \in (0,1) \)

⇒ So, Statement 1 is true

Initial data is symmetric: \( u(x,0) = u(1 - x, 0) \)

⇒ Heat equation preserves symmetry if boundary conditions symmetric 

\( u(x,t) = u(1 - x, t) \) for all \( t > 0 \)

⇒ So, Statement 2 is true

Energy functional: \( E(t) = \int_0^1 u(x,t)^2 dx \)

⇒ For heat equation with Dirichlet  boundary conditions , energy is strictly decreasing unless solution is 0

⇒ So, Statement 3 is true

\( \int_0^1 u(x,t)^2 dx \) is decreasing

⇒ non-decreasing is false

⇒ So, Statement 4 is false

∴ Correct statements are: 1 , 2 and 3 

Partial Differential Equations Question 3:

Let f : ℂ → ℂ be the function defined by 

f(z) = e(cos(1 + i) sin x

For z = x + iy ∈ ℂ , write f(z) as u (x, y) + iv(x, y) where u, v are real-valued functions. Which of the following is the value of \(\rm \frac{\partial u}{\partial x}(0, 0)\)?

  1. 0
  2. \(\rm \left(e+\frac{1}e{}\right)\frac{\cos 1}{2}\)
  3. \(\rm \left(e-\frac{1}e{}\right)\frac{\cos 1}{2}\)
  4. 1

Answer (Detailed Solution Below)

Option 2 : \(\rm \left(e+\frac{1}e{}\right)\frac{\cos 1}{2}\)

Partial Differential Equations Question 3 Detailed Solution

Concept:

Complex Functions and Partial Derivatives:

  • Given complex function: \( f(z) = e^{(\cos(1+i))\sin z} \), where z = x + iy
  • We express f(z) = u(x, y) + i v(x, y) , and are required to compute \( \frac{\partial u}{\partial x}(0,0) \).
  • Since f is holomorphic, it satisfies the Cauchy-Riemann equations and is complex differentiable.
  • Hence, \( \frac{\partial u}{\partial x}(0, 0) = \operatorname{Re} f'(0) \)

 

Calculation:

Step 1: Differentiate the function

Let \( a = \cos(1+i) \), then \( f(z) = e^{a \sin z} \)

Using chain rule, \( f'(z) = a \cos z \cdot e^{a \sin z} \)

At \( z = 0 \):

  • \( \cos 0 = 1 \)
  • \( \sin 0 = 0 \Rightarrow e^{a \cdot 0} = 1 \)

Therefore, \( f'(0) = a = \cos(1+i) \)

Step 2: Evaluate \( \cos(1+i) \)

Using the identity: \( \cos(a + ib) = \cos a \cosh b - i \sin a \sinh b \)

So, \( \cos(1+i) = \cos 1 \cosh 1 - i \sin 1 \sinh 1 \)

Step 3: Extract real part

\( \operatorname{Re}(\cos(1+i)) = \cos 1 \cosh 1 \)

And we know \( \cosh 1 = \frac{e + \frac{1}{e}}{2} \)

So, \( \operatorname{Re}(f'(0)) = \cos 1 \cdot \frac{e + \frac{1}{e}}{2} \)

Hence, \( \frac{\partial u}{\partial x}(0,0) = \left( \frac{e + \frac{1}{e}}{2} \right) \cos 1 \)

Now match this with the options. This is exactly:

∴ The correct answer is Option 2. 

Partial Differential Equations Question 4:

Let u = u(x, y) be the solution of the Cauchy problem 

\(\rm x\frac{\partial u}{\partial x}+\rm y\frac{\partial u}{\partial y}=u, (x,y)\ne (0,0), u(x,1)=\sqrt{1+x^2}, x\in \) ℝ

Then which of the following statements is true?  

  1. u(1, 0) = 0
  2. u(x1, y1) = u(x2, y2) whenever \(\rm x_1^2+y_1^2=x_2^2+y_2^2\)
  3. u(1, y) = √2 for all y ∈ ℝ 
  4. u(x1, y1) = u(x2, y2) whenever x1 + y1 = x2 + y2

Answer (Detailed Solution Below)

Option 2 : u(x1, y1) = u(x2, y2) whenever \(\rm x_1^2+y_1^2=x_2^2+y_2^2\)

Partial Differential Equations Question 4 Detailed Solution

Concept:

  • Cauchy Problem: We are given a first-order linear PDE:
  • x ∂u/∂x + y ∂u/∂y = u, where (x, y) ≠ (0, 0)
  • Initial Condition: u(x, 1) = √(1 + x²)
  • Method Used: Method of Characteristics.
  • Key Idea: Convert PDE to a system of ODEs along characteristic curves:

 

Calculation:

Given: x ∂u/∂x + y ∂u/∂y = u

Characteristic equations:

⇒ dx/x = dy/y = du/u

From dx/x = dy/y ⇒ ln x − ln y = constant ⇒ x/y = c₁

From dx/x = du/u ⇒ ln x − ln u = constant ⇒ x/u = c₂

So, solution form: u = x × φ(x/y)

Using initial condition: u(x, 1) = √(1 + x²)

⇒ √(1 + x²) = x × φ(x/1) = x × φ(x)

⇒ φ(x) = √(1 + x²)/x

Hence, u(x, y) = x × φ(x/y)

⇒ u(x, y) = x × [√(1 + (x/y)²)/(x/y)]

⇒ u(x, y) = y × √(1 + (x/y)²)

⇒ u(x, y) = √(x² + y²)

Now verify options:

Option 1: u(1, 0) = √(1² + 0²) = 1 ≠ 0

Option 2: If x₁² + y₁² = x₂² + y₂² ⇒ u(x₁, y₁) = √(x₁² + y₁²) = √(x₂² + y₂²) = u(x₂, y₂)

Option 3: u(1, y) = √(1 + y²) ≠ √2

Option 4: x₁ + y₁ = x₂ + y₂ does not imply x₁² + y₁² = x₂² + y₂²

∴ Correct option is 2): u(x₁, y₁) = u(x₂, y₂) whenever x₁² + y₁² = x₂² + y₂²

Partial Differential Equations Question 5:

Given that y1(x) = e2x is a solution of the ordinary differential equation (ODE) 

\(\rm x\frac{d^2y}{dx^2}-(3+4x)\frac{dy}{dx}+(4x+6)y=0, x>0\)

Let y2 = y2(x) be the solution of the ODE satisfying the conditions \(\rm y_2(1) = \frac{e^2}{4}, \frac{dy_2}{dx}(1)=\frac{3e^2}{2}\)

Then Which of the following statements is true? 

  1. y2 is a Strictly increasing function on (0, ∞)
  2. e-2x y2(x) → 1 as x → ∞ 
  3. y2 is a strictly decreasing function on (0, ∞)
  4. e-2x y2(x) → 0 as x → ∞ 

Answer (Detailed Solution Below)

Option 1 : y2 is a Strictly increasing function on (0, ∞)

Partial Differential Equations Question 5 Detailed Solution

Concept:

Second Order Linear Homogeneous Differential Equation:

  • This is a second-order linear ODE with variable coefficients of the form:
  • We are given one solution: y₁(x) = e2x
  • The second linearly independent solution y₂(x) can be found using the method of reduction of order
  • Let y₂(x) = v(x) × y₁(x) = v(x) × e2x
  • Reduction of order guarantees that y₂(x) increases faster than a constant multiple of y₁(x) if v(x) is an increasing function.
  • From the given conditions:
    • y₂(1) = e² / 4
    • y₂′(1) = 3e² / 2 > 0 → indicates y₂(x) has positive slope at x = 1
  • Since y₂′(x) > 0 and the differential equation is regular on (0, ∞), this implies y₂(x) is strictly increasing on (0, ∞)

 

Calculation:

Given,

y₁(x) = e2x is a solution

Let y₂(x) = v(x) × e2x

⇒ y₂′(x) = v′(x)e2x + 2v(x)e2x

Given: y₂′(1) = 3e² / 2 > 0

⇒ y₂′(x) > 0 in a neighborhood of x = 1

⇒ Since ODE is linear and regular on (0, ∞), and no turning point for y₂′(x) is forced, it remains positive

∴  y₂(x) is strictly increasing on (0, ∞)

Top Partial Differential Equations MCQ Objective Questions

Let u(x, t) be the solution of

utt − uxx = 0, 0 < x < 2, t > 0

u(0, t) = 0 = u(2, t), ∀ t > 0, 

u(x, 0) = sin (πx) + 2 sin(2πx), 0 ≤ x ≤ 2,

ut(x, 0) = 0, 0 ≤ x ≤ 2.

Which of the following is true?

  1. u(1, 1) = −1.
  2. u(1/2, 1) = 0.
  3. u(1/2, 2) = 1.
  4. ut(1/2, 1/2) = π.

Answer (Detailed Solution Below)

Option 3 : u(1/2, 2) = 1.

Partial Differential Equations Question 6 Detailed Solution

Download Solution PDF

Explanation:

Given 

utt − uxx = 0, 0 < x < 2, t > 0

u(0, t) = 0 = u(2, t), ∀ t > 0, 

u(x, 0) = sin(πx) + 2sin(2πx), 0 ≤ x ≤ 2,

ut(x, 0) = 0, 0 ≤ x ≤ 2.

which is a wave equation of finite length. So solution is

u(x, t) = \(\sum D_n \sin({n\pi x\over l})\cos({n\pi ct\over l})\) where

\(D_n=\frac2l\int_0^lf(x)\sin({n\pi x\over l})dx\)

Here c = 1, l = 2, f(x) = sin(πx) + 2sin(2πx)

So, \(D_n=\frac22\int_0^2(\sin(\pi x)+2\sin (2\pi x))\sin({n\pi x\over 2})dx\)

and u(x, t) = \(\sum D_n \sin({n\pi x\over 2})\cos({n\pi ct\over 2})\)

u(x, 0) = \(\sum D_n \sin({n\pi x\over 2})\) = sin(πx) + 2sin(2πx)

Comparing we get

D2 = 1, D4 = 2, Dn = 0 for other natural number n

Hence we get

u(x, t) = sin(πx) cos(πt) + 2sin(2πx)cos(2πt)

Then u(1, 1) = 0

u(1/2, 1) = -1

u(1/2, 2) = 1

u(1/2, 1/2) = 0

Option (3) is correct, other are false.

The general solution of the surfaces which are perpendicular to the family of surfaces

z2 = kxy, k ∈ \(\mathbb{R}\) 

is

  1. ϕ(x2 - y2, xz) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
  2. ϕ(x2 - y2, x2 + z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
  3. ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)
  4. ϕ(x2 + y2, 3x2 - z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)

Answer (Detailed Solution Below)

Option 3 : ϕ(x2 - y2, 2x2 + z2) = 0, ϕ ∈ C1 (\(\mathbb{R}\)2)

Partial Differential Equations Question 7 Detailed Solution

Download Solution PDF

Explanation:

Given z2 = kxy, k ∈ ℝ ← system surface

⇒ \(\rm k=\frac{z^2}{xy}=f(x,y,z)\)      ........(i)

Now, we will solve it using lagrange A.E - 

(Recall: Pp + Qq = R)

\(\rm \frac{\partial f}{\partial x}=\frac{z^2}{y}\left(-\frac{1}{x^2}\right)=\frac{-z^2}{x^2y}\)

\(\rm \frac{\partial f}{\partial y}=\frac{z^2}{x}\left(-\frac{1}{y^2}\right)=\frac{-z^2}{xy^2}\)

\(\rm \frac{\partial f}{\partial z}=\frac{2z}{xy}\)

So, \(\rm \frac{\partial f}{\partial x}p+\rm \frac{\partial f}{\partial y}q=\rm \frac{\partial f}{\partial z}\) (p = zx, q = zy)

⇒ \(\rm\left(\frac{-z^2}{x^2y}\right)p+\rm\left(\frac{-z^2}{xy^2}\right)q=\frac{\partial f}{\partial z}=\frac{2z}{xy}\)

⇒ \(\rm -\frac{z}{xy}\left[\frac{z}{x}p+\frac{z}{y}q\right]=\frac{z}{xy}[2]\)

⇒ \(\rm \frac{z}{x}p+\frac{z}{y}q=-2\)

⇒ (zy)p + (xz)q = -2xy (on taking LCM)     (ii)

(zy)p → P

(xz)q → Q

-2xy → R

So, by lagrange, A.E -

\(\rm \frac{dx}{P}=\frac{dy}{Q}=\frac{dz}{R}\)   

\(\rm ⇒ \frac{dz}{zy}=\frac{dy}{zx}=\frac{dz}{(-2xy)}\)

Now,

\(\rm\frac{dx}{zy}=\frac{dy}{zx}\)

⇒ x dx = y dy

on integrating

\(\rm \frac{x^2}{2}=\frac{y^2}{2}+c\)

⇒ x2 - y2 = c1

\(\rm \frac{dx}{zy}=\frac{-dz}{2xy}\)

⇒ 2x dx = -z dz

on integrating

\(\rm x^2=\frac{-z62}{2}+c\)

⇒ 2x2 + z2 = c2

So, general soln will be ϕ (c1, c2) = 0

⇒ ϕ (x2 - y2, 2x2 + z2) = 0 ⇒ option (3) correct.

other possible form of solution and when c1 & c2 calculated.

ϕ(c1, c2), c1 = ϕ(c2), c2 = ϕ(c2), \(\rm \frac{c_1}{2}=\phi(c_2)\)...

Let u(x, y) be the solution of the Cauchy problem

uux + uy = 0, x ∈ ℝ, y > 0,

u(x, 0) = x, x ∈ ℝ.

Which of the following is the value of u(2, 3)?

  1. 2
  2. 3
  3. 1/2
  4. 1/3

Answer (Detailed Solution Below)

Option 3 : 1/2

Partial Differential Equations Question 8 Detailed Solution

Download Solution PDF

Concept:

Let Pp + Qq = R be a PDE where P, Q, R are functions of x, y, z then by Lagrange's method

\(\frac{dx}{P}\) = \(\frac{dy}{Q}\) = \(\frac{du}{R}\)

Explanation:

Given 

uux + uy = 0, x ∈ ℝ, y > 0,

u(x, 0) = x, x ∈ ℝ.

Using Lagrange's method

\(\frac{dx}{P}\) = \(\frac{dy}{Q}\) = \(\frac{du}{R}\)

⇒ \(\frac{dx}{u}\) = \(\frac{dy}{1}\) = \(\frac{du}{0}\)

Solving this we get 

u = c1...(i)

and putting u = cwe get from first two terms

\(\frac{dx}{c_1}\) = \(\frac{dy}{1}\)  

dx = c1dy
⇒ x - c1y = c2

⇒ x - uy = c2...(ii)

 From (i) and (ii) we get the general solution as

u = ϕ(x - uy)

Using u(x, 0) = x we get

x = ϕ(x)  so ϕ(x - uy) = x - uy

Hence solution is

u = x - uy ⇒  u(1 + y) = x ⇒ u = \(\frac{x}{1+y}\)

Therefore u(2, 3) = \(\frac{2}{4}=\frac12\)

Option (3) is correct

If u = (x, t) is the solution of the initial value problem

\(\left\{\begin{array}{ll} u_{t}=u_{x x}, & x \in \mathbb{R}, t>0 \\ u(x, 0)=\sin (4 x)+x+1, & x \in \mathbb{R} \end{array}\right.\)

satisfying |u(x. t)| < \(\rm 3e^{x^2}\) for all x ∈ ℝ and t > 0, then

  1. \(\rm u\left(\frac{\pi}{8}, 1\right)+u\left(-\frac{\pi}{8},1\right)=2\)
  2. \(\rm u\left(\frac{\pi}{8}, 1\right)=u\left(-\frac{\pi}{8},1\right)\)
  3. \(\rm u\left(\frac{\pi}{8}, 1\right)+2u\left(-\frac{\pi}{8},1\right)=2\)
  4. \(\rm u\left(\frac{\pi}{8}, 1\right)=-u\left(-\frac{\pi}{8},1\right)\)

Answer (Detailed Solution Below)

Option 1 : \(\rm u\left(\frac{\pi}{8}, 1\right)+u\left(-\frac{\pi}{8},1\right)=2\)

Partial Differential Equations Question 9 Detailed Solution

Download Solution PDF

Explanation:

Given 

\(u_t = u_{xx}, \quad x \in \mathbb{R}, t > 0\) with the initial condition

\(u(x, 0) = \sin(4x) + x + 1, \quad x \in \mathbb{R}\)

which is a heat equation for infinite domain.

So solution is

u(x, t) = \({1\over \sqrt{4\pi ct}}\int_{-\infty}^{\infty}e^{-{(x-y)^2\over 4c^2t}}f(y)dy\)

Here f(x) = sin 4x + x + 1 and c = 1 then

u(x, t) = \({1\over \sqrt{4\pi t}}\int_{-\infty}^{\infty}e^{-{(x-y)^2\over 4t}}(\sin 4y+y+1)dy\)....(i)

(1): \(\rm u\left(\frac{\pi}{8}, 1\right)\) = \({1\over \sqrt{4\pi }}\int_{-\infty}^{\infty}e^{-{(\frac{\pi}{8}-y)^2\over 4}}(\sin 4y+y+1)dy\)

Let \({\pi\over 8}-y=u\Rightarrow dy=-du\) so

\(\rm u\left(\frac{\pi}{8}, 1\right)\) = \({1\over \sqrt{4\pi }}\int_{-\infty}^{\infty}e^{-{u^2\over 4}}(\sin 4(\frac{\pi}{8}-u)+(\frac{\pi}{8}-u)+1)du\)

\(\rm u\left(\frac{\pi}{8}, 1\right)\)\({1\over \sqrt{4\pi }}\left[\int_{-\infty}^{\infty}e^{-{u^2\over 4}}\cos 4udu+\int_{-\infty}^{\infty}e^{-{u^2\over 4}}(\frac{\pi}{8}-u)+\int_{-\infty}^{\infty}e^{-{u^2\over 4}}du\right]\)......(ii)

and \(\rm u\left(-\frac{\pi}{8}, 1\right)\) = \({1\over \sqrt{4\pi }}\int_{-\infty}^{\infty}e^{-{(-\frac{\pi}{8}-y)^2\over 4}}(\sin 4y+y+1)dy\)

Let \({\pi\over 8}+y=u\Rightarrow dy=du\) so

\(\rm u\left(-\frac{\pi}{8}, 1\right)\) = \({1\over \sqrt{4\pi }}\int_{-\infty}^{\infty}e^{-{u^2\over 4}}(\sin 4(-\frac{\pi}{8}+u)+(-\frac{\pi}{8}+u)+1)du\)

\(\rm u\left(-\frac{\pi}{8}, 1\right)\) = \({1\over \sqrt{4\pi }}\left[-\int_{-\infty}^{\infty}e^{-{u^2\over 4}}\cos 4udu-\int_{-\infty}^{\infty}e^{-{u^2\over 4}}(\frac{\pi}{8}-u)+\int_{-\infty}^{\infty}e^{-{u^2\over 4}}du\right]\).....(iii)

adding (ii) and (iii) we get

\(\rm u\left(\frac{\pi}{8}, 1\right)+u\left(-\frac{\pi}{8},1\right)\) = \({2\over \sqrt{4\pi }}\int_{-\infty}^{\infty}e^{-{u^2\over 4}}du\)

                                 = \({1\over \sqrt{\pi }}\int_{-\infty}^{\infty}e^{-{u^2\over 4}}du\)

                               = \({1\over \sqrt{\pi }}\int_{-\infty}^{\infty}e^{-p^2}2dp\) (let u = 2p then du = 2dp)

                              = \({1\over \sqrt{\pi }}.2\sqrt \pi\,\,(\because\int_{-\infty}^{\infty}e^{-p^2}dp=\sqrt\pi)\)

                             = 2

(1) is true.

From (ii) and (iii) we can see that (2), (3), (4) are false.

Consider the Cauchy problem

\(\rm x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=u;\)

𝑢 = 𝑓(𝑡) on the initial curve Γ = (𝑡, 𝑡); 𝑡 > 0.

Consider the following statements:

𝑃: If 𝑓(𝑡) = 2𝑡 + 1, then there exists a unique solution to the Cauchy problem in a neighbourhood of Γ.

𝑄: If 𝑓(𝑡) = 2𝑡 − 1, then there exist infinitely many solutions to the Cauchy problem in a neighbourhood of Γ.

Then

  1. both 𝑃 and 𝑄 are TRUE
  2. 𝑃 is FALSE and 𝑄 is TRUE
  3. 𝑃 is TRUE and 𝑄 is FALSE
  4. both 𝑃 and 𝑄 are FALSE

Answer (Detailed Solution Below)

Option 4 : both 𝑃 and 𝑄 are FALSE

Partial Differential Equations Question 10 Detailed Solution

Download Solution PDF

Given -

Consider the Cauchy problem

\(\rm x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=u;\)

𝑢 = 𝑓(𝑡) on the initial curve Γ = (𝑡, 𝑡); 𝑡 > 0.

Concept -

If the PDE is the form of pP + qQ = R then 

(i) \(\frac{p(t)}{x'}= \frac{q(t)}{y'} = \frac{R}{u'(t)}\) ⇒ Infinite solutions 

(ii) \(\frac{p(t)}{x'} \neq \frac{q(t)}{y'} \neq \frac{R}{u'(t)}\) ⇒ Unique solution

(iii) \(\frac{p(t)}{x'} = \frac{q(t)}{y'} \neq \frac{R}{u'(t)}\) ⇒ No solution

where p = x, q = y and R = u  

Explanation -

we have the PDE is \(\rm x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}=u;\) and 𝑢 = 𝑓(𝑡) on the initial curve Γ = (𝑡, 𝑡); 𝑡 > 0.

So x = t, y = t and u = f(t) 

Now for Statement (P) -

\(\frac{t}{1}= \frac{t}{1} \neq \frac{2t+1}{2}\)

Hence there is no solution. So Statement P is false.

Now for Statement (Q) -

\(\frac{t}{1}= \frac{t}{1} \neq \frac{2t-1}{2}\)

Hence there is no solution. So Statement Q is false.

Hence option (4) is true.

Let B(0,1) = {(x,y) ∈ ℝ2|x2 + y2 < 1} be the open unit disc in ℝ2, ∂B(0, 1) denote the boundary of B(0,1), and v denote unit outward normal to ∂B(0, 1). Let f : ℝ2 → ℝ be a given continuous function. The Euler-Lagrange equation of the minimization problem  

\(\rm min \left\{\frac{1}{2}\iint_{B(0,1)}|\nabla u|^2dxdy+\frac{1}{2}\iint_{B(0, 1)}e^{u^2}dxdy+∈t_{\partial B(0, 1)}fuds\right\}\)

subject to u ∈ C1 \(\rm \overline{B(0, 1)}\) is

  1. \(\rm \left\{\begin{matrix}\Delta u=-ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}=f&\rm on\ \partial B(0, 1\end{matrix}\right.\)
  2. \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}+f&\rm in \ B(0, 1)\\\ u=0&\rm on\ \partial B(0, 1\end{matrix}\right.\)
  3. \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}=-f&\rm on\ \partial B(0, 1\end{matrix}\right.\)
  4. \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}+u=f&\rm on\ \partial B(0, 1\end{matrix}\right.\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \left\{\begin{matrix}\Delta u=ue^{u^2}&\rm in \ B(0, 1)\\\ \frac{\partial u}{\partial \nu}=-f&\rm on\ \partial B(0, 1\end{matrix}\right.\)

Partial Differential Equations Question 11 Detailed Solution

Download Solution PDF
The Correct answer is (3).

We will update the solution later.

The general solution of the equation

\(x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0\) is

  1. \(z=\phi\left(\frac{|x|}{|y|}\right), \phi \in C^1(\mathbb{R})\)
  2. \(z=ϕ\left(\frac{x-1}{y}\right), ϕ ∈ C^1(\mathbb{R})\)
  3. \(z=\phi\left(\frac{x+1}{y}\right), \phi \in C^1(\mathbb{R})\)
  4. z = ϕ(|x| + |y|), ϕ ∈ C1\((\mathbb{R})\)

Answer (Detailed Solution Below)

Option 1 : \(z=\phi\left(\frac{|x|}{|y|}\right), \phi \in C^1(\mathbb{R})\)

Partial Differential Equations Question 12 Detailed Solution

Download Solution PDF

Explanation:

Given: \(x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=0\) i.e. xp + yq = 0

on comping with Pp + Qq = R, we have-

P = x, Q = y & R = 0

so, By Lagrange auxillary equation

 \(\frac{d x}{p}=\frac{d y}{Q}=\frac{d z}{R}\)

\(\Rightarrow \frac{d x}{x}=\frac{d y}{y}=\frac{d z}{0}\)

Now dz = 0

⇒ z = c1

using first and 2nd term

 \(\frac{d x}{x}=\frac{d y}{y}\)

Integrating, 

log |z| = log |y| + log c2

\(\Rightarrow \log \left(\frac{|x|}{|y|}\right)=\log c_2\)

\(\Rightarrow c_2=\frac{|x|}{|y|}\)

Hence, general sol is -

c1 ϕ(c2) or c2 = ϕ(c1) or ϕ(c1 c2) = o

⇒ z = ϕ \(\left(\frac{|x|}{|y|}\right)\) 

option (1) correct

Partial Differential Equations Question 13:

Let u(x, t) be the solution of

utt − uxx = 0, 0 < x < 2, t > 0

u(0, t) = 0 = u(2, t), ∀ t > 0, 

u(x, 0) = sin (πx) + 2 sin(2πx), 0 ≤ x ≤ 2,

ut(x, 0) = 0, 0 ≤ x ≤ 2.

Which of the following is true?

  1. u(1, 1) = −1.
  2. u(1/2, 1) = 0.
  3. u(1/2, 2) = 1.
  4. ut(1/2, 1/2) = π.

Answer (Detailed Solution Below)

Option 3 : u(1/2, 2) = 1.

Partial Differential Equations Question 13 Detailed Solution

Explanation:

Given 

utt − uxx = 0, 0 < x < 2, t > 0

u(0, t) = 0 = u(2, t), ∀ t > 0, 

u(x, 0) = sin(πx) + 2sin(2πx), 0 ≤ x ≤ 2,

ut(x, 0) = 0, 0 ≤ x ≤ 2.

which is a wave equation of finite length. So solution is

u(x, t) = \(\sum D_n \sin({n\pi x\over l})\cos({n\pi ct\over l})\) where

\(D_n=\frac2l\int_0^lf(x)\sin({n\pi x\over l})dx\)

Here c = 1, l = 2, f(x) = sin(πx) + 2sin(2πx)

So, \(D_n=\frac22\int_0^2(\sin(\pi x)+2\sin (2\pi x))\sin({n\pi x\over 2})dx\)

and u(x, t) = \(\sum D_n \sin({n\pi x\over 2})\cos({n\pi ct\over 2})\)

u(x, 0) = \(\sum D_n \sin({n\pi x\over 2})\) = sin(πx) + 2sin(2πx)

Comparing we get

D2 = 1, D4 = 2, Dn = 0 for other natural number n

Hence we get

u(x, t) = sin(πx) cos(πt) + 2sin(2πx)cos(2πt)

Then u(1, 1) = 0

u(1/2, 1) = -1

u(1/2, 2) = 1

u(1/2, 1/2) = 0

Option (3) is correct, other are false.

Partial Differential Equations Question 14:

Let u(x, y) be the solution of \(\frac{\partial ^2u}{\partial x^2}+\frac{\partial ^2u}{\partial y^2 }=64\) in the unit disc {(x, y)|x2 + y2 < 1} and such that u vanishes on the boundary of the disc. Then u \(\left(\frac{1}{4},\frac{1}{\sqrt2} \right) \) is equal to

  1. 7
  2. 16
  3. -7
  4. -16

Answer (Detailed Solution Below)

Option 3 : -7

Partial Differential Equations Question 14 Detailed Solution

Explanation:

From the trial and error method, we can say that u = 16(x2 + y2) - 16 will be the solution of the given partial differential equation as

ux = 32x ⇒ \(\frac{\partial ^2u}{\partial x^2}\) = 32 and uy = 32y ⇒ \(\frac{\partial ^2u}{\partial y^2}\) = 32 so

\(\frac{\partial ^2u}{\partial x^2}+\frac{\partial ^2u}{\partial y^2 }=64\)

Also, it satisfies the given boundary condition as on the boundary of a unit disk u = 16 × 1 - 16 = 0, so u vanishes.

Hence u \(\left(\frac{1}{4},\frac{1}{\sqrt2} \right) =16(\frac1{16}+\frac12)\) - 16 = 16.\(\frac{9}{16}\) - 16 = 9 -16 = - 7

Option (3) is correct

Partial Differential Equations Question 15:

Let u(x, t) be a smooth solution to the wave equation

(∗) \(\frac{\partial^2 u}{\partial t^2}-\frac{\partial^2 u}{\partial x^2}=0\) for (x, t) ∈ ℝ2.

Which of the following is FALSE?

  1. u(x - θ, t) also solves the wave equation (∗) for any fixed θ ∈ ℝ.
  2. \(\frac{\partial u}{\partial x}\) also solves the wave equation (∗).
  3. u(3x, 9t) also solves the wave equation (∗).
  4. u(3x, 3t) also solves the wave equation (∗).

Answer (Detailed Solution Below)

Option 3 : u(3x, 9t) also solves the wave equation (∗).

Partial Differential Equations Question 15 Detailed Solution

Concept:

If u(x, t) is a solution of a homogeneous PDE then u(x- a, t-b) is also a solution of the PDE for a, b ∈ \(\mathbb R\) and u(ax, bt) is also a solution if a = b is real number

Explanation:

(∗) \(\frac{\partial^2 u}{\partial t^2}-\frac{\partial^2 u}{\partial x^2}=0\) x, t) ∈ ℝ2

u(x, t) is a solution of (∗) 

then u(x - θ, t) is also a solution of (i) for any fixed θ ∈ ℝ.

u(3x, 3t) is also a solution of (∗)

u(3x, 9t) is not a solution of (∗) as 3 ≠ 9

(3) is FALSE

Get Free Access Now
Hot Links: lucky teen patti teen patti real cash 2024 teen patti bodhi teen patti tiger teen patti flush