Current Division MCQ Quiz - Objective Question with Answer for Current Division - Download Free PDF

Last updated on Mar 11, 2025

Latest Current Division MCQ Objective Questions

Current Division Question 1:

Find current im in the given circuit.

F1 Savita ENG 11-10-23 D29

  1. 4 A
  2. 1 A
  3. -1 A
  4. -4 A

Answer (Detailed Solution Below)

Option 3 : -1 A

Current Division Question 1 Detailed Solution

Concept:

Current division rule:

When 'n' resistors are connected in parallel across a current source, then-current is divided as follows

\({I_{R1}} = I\left[ {\frac{{{\frac1{R_1} }}}{{\frac1{R_1} + \frac1{R_2}+ ~......~+\frac1{R_n}}}} \right]\)

When two resistors are connected in parallel, then-current is divided as follows

F1 U.B Madhu 07.01.20 D16

By using current division rule,

The current flows through the resistor R1 is \({I_{R1}} = I\left( {\frac{{{R_2}}}{{{R_1} + {R_2}}}} \right)\)

The current flows through the resistor R2 is \({I_{R2}} = I\left( {\frac{{{R_1}}}{{{R_1} + {R_2}}}} \right)\)

Calculation:

\(i_m = 5 \times \frac{10}{40+10} = 1~A\)

Since im is in the opposite direction it is taken in - 1 A.

Current Division Question 2:

An electric current of 10 A is divided into three branches named branch1, branch2 and branch3, respectively, the lengths of the wires in the three branches being proportional to 1, 2 and 4. If wires of the same material and cross-section are used, what are the values of the currents in branch1, branch2 and branch3, respectively?

  1. I1 = 5.451 A, l= 2.722 A and l= 1.818 A
  2. I1 = 5.714 A, l= 2.857 A and l= 1.428 A
  3. I1 = 5.315 A, l= 2.105 A and l= 1.579 A
  4. I1 = 5.521 A, l= 2.174 A and l= 1.304 A

Answer (Detailed Solution Below)

Option 2 : I1 = 5.714 A, l= 2.857 A and l= 1.428 A

Current Division Question 2 Detailed Solution

Concept

By Ohm's Law:                                              

V = I × R

In parallel, the voltage remains constant.

Since the resistance is proportional to the length (R α l)

∴ \(I\space α\space {1\over R}\space α \space {1\over l}\)

where, I = Current

R = Resistance

l = Length

Calculation
 F1 Vinanti Engineering 23.05.23 D1 V2
The equivalent resistance for the circuit is:

\(R=R_1||R_2||R_3\)

\(R=({1×2\over 1+2})||4\)

\(R=({2\over 3})||4\)

\(R={{2\over 3}× 4\over {2\over 3}+4}=0.571\Omega \)

F1 Vinanti Engineering 23.05.23 D2 V2  
The voltage (V) is given by:

V = 10 × 0.571 = 5.71 volts

In parallel, the voltage remains the same.

\(I_1={5.71\over 1}=5.71 A\)

\(I_2={5.71\over 2}=2.85A\)

\(I_3={5.71\over 4}=1.42 A\)

Current Division Question 3:

Consider the circuit shown below. Find the current flowing through 20 Ω resistor:

F1 Vinanti Engineering 02.12.22 D9

  1. 0.625
  2. 0
  3. 0.99
  4. 0.66

Answer (Detailed Solution Below)

Option 1 : 0.625

Current Division Question 3 Detailed Solution

The correct answer is option 1): 

Concept:

Current division rule

Current through resistor R1,\(I_1=I×\frac{R_2}{R_1+R_2}\)

Current through resistor R2,\(I_2=I×\frac{R_1}{R_1+R_2}\)

When two resistors connected in R1,  R2 series 

The total resistance is  R+ R2

When two resistors connected in R1,  R2 Parallel

The total resistance is ( \(\frac{1}R_1 + \frac{1}{R_2}\))-1

Calculation:

The given circuit is

F1 Vinanti Engineering 02.12.22 D9

Total resistance = 4 + ( \(\frac{1}{10} + \frac{1}{20}\))-1

=  4+ 6.667

= 10.667

I = \(V\over R\)

= 1.87494 A

Current through resistor 20 ,\(I_2=I×\frac{R_1}{R_1+R_2}\)

= 1.87494 × \(10 \over 30\)

= 0.625 A

Current Division Question 4:

Find the current 'i' in the given circuit.

F1 Vinanti Engineering 20.12.22 D10

  1. 80 mA
  2. 8 mA
  3. 32 mA
  4. 16 mA

Answer (Detailed Solution Below)

Option 3 : 32 mA

Current Division Question 4 Detailed Solution

The correct answer is option 3):(32 mA)

Concept:

When two resistors R1 and R2 are connected in series the total resistance 

Rt = R1 +R2

When two resistors Rand R2 are connected in parallel the total resistance will be

Rt = (\(1\over R_1\) + \(1\over R_2\))-1

Current Division method

Current through R1 \(I_1=I×\frac{R_2}{R_1+R_2}\)

Current through R2 \(I_2=I×\frac{R_1}{R_1+R_2}\)

By  ohms law 

V = IR 

where I is the current R is the resistor

Calculation:

Given

 

F1 Vinanti Engineering 20.12.22 D10

The circuit  can be simplified as

R1 = 500 Ω 

R2 = 150 Ω + 600 Ω = 750 Ω 

Total resistance = ( \(1\over 500\) + \(1 \over 750\))-1+ 200

= 500 Ω 

I = \(40 \over 500\)

= 0.08 A

\(I_2=I×\frac{R_1}{R_1+R_2}\) = i

= 0.08 × \(500 \over 1250\)

= 0.032 A

= 32mA

Current Division Question 5:

Find the current im' in the given circuit.

F1 Vinanti Engineering 20.12.22 D7

  1. 4 A
  2. -1 A
  3. -4 A
  4. 1 A

Answer (Detailed Solution Below)

Option 2 : -1 A

Current Division Question 5 Detailed Solution

The correct answer is option 2):(-1 A)

Concept:

When two resistors Rand R2 are connected in series the total resistance 

Rt = R1 +R2

When two resistors Rand R2 are connected in parallel the total resistance will be

Rt = (\(1\over R_1\) + \(1\over R_2\))-1

Current Division method

Current through R1 \(I_1=I×\frac{R_2}{R_1+R_2}\)

Current through R2 \(I_2=I×\frac{R_1}{R_1+R_2}\)

By  ohms law 

V = IR 

where I is the current R is the resistor

Calculation:

The given circuit is 

F1 Vinanti Engineering 20.12.22 D7

Current through R2 \(I_2=I×\frac{R_1}{R_1+R_2}\)

= 5 × \(10\over 50\)

= 1 A

the direction of the current is reversed so Im = -1 A

Top Current Division MCQ Objective Questions

What will be the reading of the ammeter in the given figure, if voltmeter reads 12 V?

F1 S.B Madhu 11.03.20 D4

  1. 2 A
  2. 1 A
  3. 3 A
  4. cannot be determined

Answer (Detailed Solution Below)

Option 1 : 2 A

Current Division Question 6 Detailed Solution

Download Solution PDF

Given V = 12 V

Applying Ohms Law at 4 Ω resistor, we get:

12 = I × 4

I = 3 A

The circuit is redrawn as shown:

F2 S.B Madhu 11.03.20 D7

Using current division, we get:

\(I_1 =3\times \frac{R_1}{R_1+R_2}\)

\(I_1 =3\times \frac{8}{8+4}=2~A\)

So the ammeter will read 2 A.

A voltage source and two resistors are connected in parallel as in the given circuit. Suppose that Vs = 150 V, R1 = 50 Ω and R2 = 25 Ω. Find the currents i1 and i2 in each resistor.

F1 Raju Madhuri 13.04.2021 D 11

  1. i1 = 3 A and i2 = 6 A
  2. i1 = -3 A and i2 = 6 A
  3. i1 = 3 A and i2 = -6 A
  4. i1 = 6 A and i2 = 3 A

Answer (Detailed Solution Below)

Option 3 : i1 = 3 A and i2 = -6 A

Current Division Question 7 Detailed Solution

Download Solution PDF

F1 Raju Madhuri 13.04.2021 D 11

Given Vs = 150 V, R1 = 50 Ω, R2 = 25 Ω

Since voltage parameter in parallel connected elements is same.

Vs = V1 = V2 = 150 V

∴ i1 = V1 / R1 = 150 / 50 = 3 A

Since the direction of the arrow mentioned is in opposite direction to the actual current flow i2 is considered as negative.

i2 = -V2 / R2 = -150 / 25 = - 6 A

A battery of unknown EMF is connected across resistances as shown in the given figure. The voltage drop across the 5 Ω resistors is 15 V. What is the EMF of the battery?

F1 Shubham Shraddha 17.08.21 D41

  1. 50 V
  2. 30 V
  3. 40 V
  4. 60 V

Answer (Detailed Solution Below)

Option 4 : 60 V

Current Division Question 8 Detailed Solution

Download Solution PDF

Given: 

F1 Shubham Shraddha 17.08.21 D41

The voltage drop across the 5 Ω resistors is 15 V

15 = 5I ⇒ I = 3 A

I will divide into I1 and I2

By current division 

\(I_1=\frac{5+5}{5+5+10}I=\frac{10}{20}× 3= 1.5\;A\)

\(I_2=\frac{10}{5+5+10}I=\frac{10}{20}× 3= 1.5\;A\)

Voltage across AC = VAC = I1 × 10 = 1.5 × 10 = 15 V

E = I(5 + 10) + VAC = 3 × 15 + 15 = 60 V

The EMF of the battery is 60 V.

Additional Information

Current division rule

F1 U.B M.P 13.08.19 D 8

By using current division rule,

The current flows through the resistor R­1 = I1 = \(\frac{{I\left( {{R_2}} \right)}}{{{R_1} + {R_2}}}\)

The current flows through the resistor R­2 = I2 = \(\frac{{I\left( {{R_1}} \right)}}{{{R_1} + {R_2}}}\)

For the network shown in figure, the value of supply current and source emf is:

F1 Shubham Madhuri 26.04.2021 D4

  1. 4.5 A, 36 V
  2. 1.5 A, 27 V
  3. 4.5 A, 87 V
  4. 1.5 A, 36 V

Answer (Detailed Solution Below)

Option 3 : 4.5 A, 87 V

Current Division Question 9 Detailed Solution

Download Solution PDF

Concept:

Current division rule

Consider the below circuit to understand the current division rule before solving the actual problem

F1 U.B M.P 13.08.19 D 8

By using the current division rule,

The current flows through the resistor R­1 = I1 = \(\frac{{I\left( {{R_2}} \right)}}{{{R_1} + {R_2}}}\)

The current flows through the resistor R­2 = I2 = \(\frac{{I\left( {{R_1}} \right)}}{{{R_1} + {R_2}}}\)

Calculation:

quesImage7629

From concept

\(I_4 =\frac{{I\left( {{R_3}} \right)}}{{{R_3} + {R_4}}}\)

\(3 =\frac{{I\left( {{16}} \right)}}{{{16} + {8}}}\)

I = 4.5 A

Voltage across R4 is V4

V4 = I4 × R4 = 3 × 8 = 24 V

R3 and R4 are in parallel so V3 = V4 = 24 V

V1 = I × R1 = 4.5 × 8 = 36 V

V2 = I × R2 = 4.5 × 6 = 27 V

From KVL,

E = V1 + V2 + V4 = 24 + 36 + 27

= 87 V

The total current flowing through a parallel connection of 20 Ω and 60 Ω resistors is 40 A. What will be the current flowing through the 60 Ω resistor?

  1. 15 A
  2. 20 A
  3. 30 A
  4. 10 A

Answer (Detailed Solution Below)

Option 4 : 10 A

Current Division Question 10 Detailed Solution

Download Solution PDF

Concept: 

Current division rule:

When 'n' resistors are connected in parallel across a current source, then-current is divided as follows

\({I_{R1}} = I\left[ {\frac{{{\frac1{R_1} }}}{{\frac1{R_1} + \frac1{R_2}+ ~......~+\frac1{R_n}}}} \right]\)

When two resistors are connected in parallel, then-current is divided as follows

F1 U.B Madhu 07.01.20 D16

By using current division rule,

The current flows through the resistor R1 is \({I_{R1}} = I\left( {\frac{{{R_2}}}{{{R_1} + {R_2}}}} \right)\)

The current flows through the resistor R2 is \({I_{R2}} = I\left( {\frac{{{R_1}}}{{{R_1} + {R_2}}}} \right)\)

Application;

Let R1 = 20 Ω, R2 = 60 Ω, I = 40 A

\({I_{R2}} = I\left( {\frac{{{R_1}}}{{{R_1} + {R_2}}}} \right)\)

IR2 = I60Ω = 40 × (20 / 80) 

I60Ω = 10 A

Find the current in each branch of the given network if the total current is 2.55 A.

F8 Jai Prakash 29-12-2020 Swati D7

  1. I1 = 1.25 A, I2 = 1.0 A
  2. I1 = 1 A, I2 = 1.55 A
  3. I1 = 2 A, I2 = 0.25 A
  4. I1 = 0.75 A, I2 = 1.5 A

Answer (Detailed Solution Below)

Option 2 : I1 = 1 A, I2 = 1.55 A

Current Division Question 11 Detailed Solution

Download Solution PDF

Concept:

Different connections of resistance.

1.Series Connection.

F12 Jai Prakash 2-2-2021 Swati D31

Req = R1 + R2 + R3

If N resistance is connected in series then, 

Req = R1 + R2 + R3

If N resistance is connected in series then, 

eq = R1 + R2 + R3 + ------ + RN-1 + RN\( \mathop \sum \limits_{i = 1}^N {R_i}\)

2 Parallel Connection

F12 Jai Prakash 2-2-2021 Swati D32

\( \frac{1}{{{R_{eq}}}} = \frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}\)

  • If N resistance are connected in parallel then,

 \( \frac{1}{{{R_{eq}}}} = \;\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}} + \frac{1}{{{R_3}}} + - - - - + \frac{1}{{{R_{N - 1}}}} + \frac{1}{{{R_N}}} = \;\mathop \sum \limits_{i = 1}^N \frac{1}{{{R_i}}}\)

Current Division Rule:

The current in any of the parallel branches is equal to the ratio of opposite branch resistance to the total resistance, multiplied by the total current.

F12 Jai Prakash 2-2-2021 Swati D33

\( {I_1} = \;\frac{{{R_2}}}{{{R_1} + {R_2}}}I\;\;\;\& \;\;\;{I_2} = \frac{{{R_1}}}{{{R_1} + {R_2}}}I\)

Calculation:

F12 Jai Prakash 2-2-2021 Swati D34

Here, V = 10 V

Ra = 2 Ω

Rb = 8 Ω  

Rc = 5 Ω

Rx = Ra + Rb = 2 + 8 = 10 Ω

Ry = Rc + R = (5 + R) Ω 

Req = Rx || Ry =\( \frac{{{\rm{RxRy\;}}}}{{{\rm{Rx}} + {\rm{Ry}}}} = \;\frac{{10\left( {5 + R} \right)}}{{10 + 5 + R}} = \;\frac{{10\left( {5 + R} \right)}}{{15 + R}}\)

Since, V = IReq

\( 10 = 2.55 \times \frac{{10\left( {5 + R} \right)}}{{15 + R}}\)

\( \;\;\frac{{15 + R}}{{5 + R}} = 2.55 \)

15 + R = 12.75 + 2.55R

1.55R = 2.25

R = 1.45 Ω

So Ry = 5 + R = 5 + 1.45 = 6.45 Ω

Now, through current division Rule 

\( \;\;{I_1} = \;\frac{{{R_y}}}{{{R_x} + {R_y}}} \times I\)

 =\( \frac{{6.45}}{{10 + 6.45\;}}\; \times 2.55\)

\( \frac{{6.45 \times 2.55}}{{16.45}} = 1\;A\)

\( {I_2} = \;\frac{{{R_x}}}{{{R_x} + {R_y}}}I\)

\( \frac{{10}}{{10 + 6.45}}2.55\)

\( \frac{{10 \times 2.55}}{{16.45}} = 1.55\;A\)

Important Points

Voltage Division Rule:

Voltage across a resistor in a series circuit is equal to the value of that resistor times the total voltage across the series elements divided by the total resistance of the series elements.

F12 Jai Prakash 2-2-2021 Swati D35

\( {V_{R1}} = \;\frac{{{R_1}}}{{{R_1} + {R_2}}}{V_s}\;\;\& \;\;{V_{R2}} = \;\frac{{{R_2}}}{{{R_1} + {R_2}}}{V_s}\)

Shortcut Trick:

Resistance Rx = 10 Ω

The voltage across Rx is 10 V

So current \( {I_1} = \;\frac{V}{{{R_x}}} = \;\frac{{10}}{{10}} = 1\;A\)

From the 4 options given below, only option (2) contains I1 = 1 Amp.

So option (2) is the correct option.

Find current im in the given circuit.

F1 Savita ENG 11-10-23 D29

  1. 4 A
  2. 1 A
  3. -1 A
  4. -4 A

Answer (Detailed Solution Below)

Option 3 : -1 A

Current Division Question 12 Detailed Solution

Download Solution PDF

Concept:

Current division rule:

When 'n' resistors are connected in parallel across a current source, then-current is divided as follows

\({I_{R1}} = I\left[ {\frac{{{\frac1{R_1} }}}{{\frac1{R_1} + \frac1{R_2}+ ~......~+\frac1{R_n}}}} \right]\)

When two resistors are connected in parallel, then-current is divided as follows

F1 U.B Madhu 07.01.20 D16

By using current division rule,

The current flows through the resistor R1 is \({I_{R1}} = I\left( {\frac{{{R_2}}}{{{R_1} + {R_2}}}} \right)\)

The current flows through the resistor R2 is \({I_{R2}} = I\left( {\frac{{{R_1}}}{{{R_1} + {R_2}}}} \right)\)

Calculation:

\(i_m = 5 \times \frac{10}{40+10} = 1~A\)

Since im is in the opposite direction it is taken in - 1 A.

An electric current of 10 A is divided into three branches named branch1, branch2 and branch3, respectively, the lengths of the wires in the three branches being proportional to 1, 2 and 4. If wires of the same material and cross-section are used, what are the values of the currents in branch1, branch2 and branch3, respectively?

  1. I1 = 5.451 A, l= 2.722 A and l= 1.818 A
  2. I1 = 5.714 A, l= 2.857 A and l= 1.428 A
  3. I1 = 5.315 A, l= 2.105 A and l= 1.579 A
  4. I1 = 5.521 A, l= 2.174 A and l= 1.304 A

Answer (Detailed Solution Below)

Option 2 : I1 = 5.714 A, l= 2.857 A and l= 1.428 A

Current Division Question 13 Detailed Solution

Download Solution PDF

Concept

By Ohm's Law:                                              

V = I × R

In parallel, the voltage remains constant.

Since the resistance is proportional to the length (R α l)

∴ \(I\space α\space {1\over R}\space α \space {1\over l}\)

where, I = Current

R = Resistance

l = Length

Calculation
 F1 Vinanti Engineering 23.05.23 D1 V2
The equivalent resistance for the circuit is:

\(R=R_1||R_2||R_3\)

\(R=({1×2\over 1+2})||4\)

\(R=({2\over 3})||4\)

\(R={{2\over 3}× 4\over {2\over 3}+4}=0.571\Omega \)

F1 Vinanti Engineering 23.05.23 D2 V2  
The voltage (V) is given by:

V = 10 × 0.571 = 5.71 volts

In parallel, the voltage remains the same.

\(I_1={5.71\over 1}=5.71 A\)

\(I_2={5.71\over 2}=2.85A\)

\(I_3={5.71\over 4}=1.42 A\)

Find the current flowing through the 6 Ω resistor in the above figure.

F1 Uday.B 14-12-20 Savita D5

  1. 6 A
  2. 2 A
  3. 4 A
  4. 5 A

Answer (Detailed Solution Below)

Option 3 : 4 A

Current Division Question 14 Detailed Solution

Download Solution PDF

Concept:

F1 U.B M.P 13.08.19 D 8

By using the current division rule,

The current flows through the resistor R­1 = I1 = \(\frac{{I\left( {{R_2}} \right)}}{{{R_1} + {R_2}}}\)

The current flows through the resistor R­2 = I2 = \(\frac{{I\left( {{R_1}} \right)}}{{{R_1} + {R_2}}}\)

Calculation:

The given circuit can be reduced to,

F1 Uday.B 14-12-20 Savita D6

Now, by using the current division rule, the current flowing through the 6 Ω resistor is

\(i = 12\left( {\frac{3}{{3 + 6}}} \right) = 4\;A\)

F35 Neha B 12-4-2021 Swati D49

Find the EMF of the battery shown in the figure. The voltage drop cross the 8 Ω resistor is 20 V

  1. 43.5 V
  2. 67.3 V
  3. 52 V
  4. 24 V

Answer (Detailed Solution Below)

Option 2 : 67.3 V

Current Division Question 15 Detailed Solution

Download Solution PDF

Concept:-

KVL: Kirchhoff’s Voltage Law (KVL) states that the sum of all the voltages around a loop is equal to zero.

KCL: Kirchhoff’s Current Law (KCL) states that the algebraic sum of all the current entering or exiting a node is always zero.

Current division: The distribution of total current in between the parallel branches of a divider circuit is known as current division.

Equation:

F31 Shubham B 12-5-2021 Swati D6

Current \({{\rm{I}}_1} = \frac{{{{\rm{R}}_2}}}{{{{\rm{R}}_1} + {{\rm{R}}_2}}}{{\rm{I}}_{\rm{T}}}\) ---(1)

Where IT is the total current

I1 and I2 are the currents in branch 1 and branch 2 respectively.

Calculations:-

F31 Shubham B 12-5-2021 Swati D7

Given,

Voltage drop across 8 Ω resistor = 20 V

From ohm’s law equation

V = IR

\(\;{\rm{I}} = \frac{{\rm{V}}}{{\rm{R}}}\)

So, \({\rm{I}} = \frac{{20}}{8}{\rm{A}}\)  = 2.5 A    ----(2)

Using current division equation from  1 

\({{\rm{I}}_1} = \frac{{15 + 13}}{{15 + 13 + 11}}2.5{\rm{\;A}}\)

I1 = 1.794 A

Now applying KVL in loop 1,

-E + 20 + 11 × I + 11 × I1 = 0    

⇒ E = 20 + 11 × 2.5 + 11 × 1.794     (putting values of I and I1)

⇒ E = 67.3 V

So the EMF of the battery shown is 67.3 Volts.

Get Free Access Now
Hot Links: teen patti apk teen patti master gold teen patti master download