The area bound by the parabolas y = 3x2 and x- y + 4 = 0 is:

This question was previously asked in
AAI ATC Junior Executive 21 Feb 2023 Shift 2 Official Paper
View all AAI JE ATC Papers >
  1. \(16 \sqrt{2}\)
  2. \(\frac{16}{3} \sqrt{3} \)
  3. \(\frac{16}{3}\)
  4. \(\frac{16}{3} \sqrt{2}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{16}{3} \sqrt{2}\)
Free
AAI ATC JE Physics Mock Test
7.1 K Users
15 Questions 15 Marks 15 Mins

Detailed Solution

Download Solution PDF

Given:

The parabolas y = 3x2 and x- y + 4 = 0

Concept:

Apply concept of area between two curves y1 and y2 between x = a and x = b

\(\rm A=\int_a^b(y_1-y_2)\ dx\)

Calculation:

The parabolas y = 3x2 and x- y + 4 = 0

then 3x2 = x2 + 4

⇒ x2 = 2

⇒ x = ± √ 2

Then the area is 

\(\rm A=\int_{-\sqrt2}^{\sqrt2}(x^2+4-3x^2) \ dx\)

\(\rm A=\int_{-\sqrt2}^{\sqrt2}(4-2x^2) \ dx\)

\(\rm A=[4x-2\frac{x^3}{3}]_{-\sqrt2}^{\sqrt2}\)

\(\rm A=4[\sqrt2-(-\sqrt2)]-\frac{2}{3}[{\sqrt2}^3-{(-\sqrt2)}^3]\)

\(\rm A=8\sqrt2-\frac{8}{3}\sqrt2\)

\(\rm A=\frac{16\sqrt2}{3}\) sq unit.

Hence option (4) is correct.

Latest AAI JE ATC Updates

Last updated on Jun 18, 2025

-> AAI ATC exam date 2025 has been released. The exam is scheduled to be conducted on July 14. 

-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025. 

-> AAI JE ATC 2025 notification is released on 4th April 2025, along with the details of application dates, eligibility, and selection process.

-> Total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.

-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in Airports Authority of India (AAI).

-> The Selection of the candidates is based on the Computer Based Test, Voice Test and Test for consumption of Psychoactive Substances.

-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).

-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.

-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.

Get Free Access Now
Hot Links: teen patti gold real cash teen patti comfun card online teen patti master 51 bonus