एक पतली डिस्क और एक पतली रिंग, दोनों में द्रव्यमान M और त्रिज्या R हैं। दोनों अपने केंद्र के माध्यम से अक्ष के ओर घूमती हैं और एक ही कोणीय वेग पर उनकी सतहों के लंबवत होती हैं। इनमें से सच क्या है?

This question was previously asked in
NDA (Held On: 17 Nov 2019) General Ability Test Previous Year paper
View all NDA Papers >
  1. रिंग में उच्च गतिज ऊर्जा होती है
  2. डिस्क में गतिज ऊर्जा अधिक होती है
  3. रिंग और डिस्क में एक ही गतिज ऊर्जा होती है
  4. दोनों निकायों की गतिज ऊर्जाएं शून्य हैं क्योंकि वे रैखिक गति में नहीं हैं

Answer (Detailed Solution Below)

Option 1 : रिंग में उच्च गतिज ऊर्जा होती है
Free
UPSC NDA 01/2025 General Ability Full (GAT) Full Mock Test
5.8 K Users
150 Questions 600 Marks 150 Mins

Detailed Solution

Download Solution PDF

धारणा:

जड़त्व आघूर्ण

  • एक स्थिर अक्ष के अनुरूप एक कठोर निकाय का जड़त्व आघूर्ण को निकाय का गठन करने वाले कणों के द्रव्यमान और घूर्णन अक्ष के बीच की दूरी के वर्ग के गुणनफल के रूप में परिभाषित किया गया है।
  • एक निकाय का जड़त्व आघूर्ण इस प्रकार होगा

⇒ I = mr2

जहां r = घूर्णन अक्ष से कण की लंबवत दूरी।

  • कई कणों (असतत वितरण) से बने निकाय का जड़त्व आघूर्ण

⇒ I = m1r12 + m2r22 + m3r32 + m4r42 + -------

गतिज ऊर्जा (KE):

  • वह ऊर्जा जिससे एक निकाय में इसके घूर्णन गति के आधार पर गति होती है, उसको घूर्णन गतिज ऊर्जा कहलाता है।
  • एक निर्दिष्ट अक्ष के चारों ओर घूमने वाले एक निकाय में गतिज ऊर्जा होती है क्योंकि इसके घटक कण गति में होते हैं, भले ही निकाय पूर्ण रूप से एक स्थान में होती है।
  • गणितीय रूप से घूर्णन गतिज ऊर्जा को निम्न रूप में लिखा जा सकता है -

\(⇒ KE = \frac{1}{2}I{\omega ^2}\)

जहाँ I = जड़त्त्वाघूर्ण और ω = कोणीय वेग

स्पष्टीकरण:

  • केंद्र से गुजरने वाले और उसके समतल के लंबवत होनेवाले एक अक्ष के ओर रिंग का जड़त्त्वाघूर्ण निम्न द्वारा दिया जाता है -

\(⇒ {I_{ring}} = M{R^2}\)

  • केंद्र से गुजरने वाले और उसके समतल के लंबवत होनेवाले एक अक्ष के ओर डिस्क का जड़त्त्वाघूर्ण निम्न द्वारा दिया जाता है -

\(⇒ {I_{disc}} = \frac{1}{2}M{R^2}\)

  • जैसा कि हम जानते हैं कि गणितीय रूप से घूर्णी गतिज ऊर्जा को इसप्रकार लिखा जा सकता है

\(⇒ KE = \frac{1}{2}I{\omega ^2}\)

  • प्रश्न के अनुसार पतली डिस्क और एक पतली रिंग का कोणीय वेग समान है। इसलिए गतिज ऊर्जा जड़त्त्वाघूर्ण पर निर्भर करती है।
  • इसलिए अधिक जड़त्त्वाघूर्ण वाले निकाय में गतिज ऊर्जा अधिक होगी और इसके विपरीत।
  • तो, समीकरण से यह स्पष्ट है कि,

⇒ Iring > Idisc

∴ Kring > Kdisc

  • रिंग में उच्च गतिज ऊर्जा होती है।

quesImage483

    निकाय 

घूर्णन अक्ष

जड़त्व आघूर्ण

त्रिज्या R का एक समान वृतीय वलय

अपने तल के लंबवत और केंद्र के माध्यम से

MR2

त्रिज्या R का एक समान वृतीय वलय

व्यास

\(\frac{MR^2}{2}\)

त्रिज्या R की एक समान वृतीय डिस्क अपने तल के लंबवत और केंद्र के माध्यम से \(\frac{MR^2}{2}\)
त्रिज्या R की एक समान वृतीय डिस्क व्यास \(\frac{MR^2}{4}\)
त्रिज्या R का एक खोखला बेलन बेलन का अक्ष MR2
Latest NDA Updates

Last updated on Jul 8, 2025

->UPSC NDA Application Correction Window is open from 7th July to 9th July 2025.

->UPSC had extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Moment of Inertia and Centroid Questions

Get Free Access Now
Hot Links: teen patti glory teen patti octro 3 patti rummy teen patti winner teen patti master gold download