For a van der Waals gas, the partial derivative \(\left( {\frac{{\partial U}}{{\partial V}}}\right)\)T, is

This question was previously asked in
CSIR-UGC (NET) Chemical Science: Held on (26 Nov 2020)
View all CSIR NET Papers >
  1. \(\rm \frac{V_m}a{}\)
  2. \(\rm \frac{V^2_m}a{}\)
  3. \(\rm \frac{a}{V^2_m}\)
  4. \(\rm \frac{a}{V_m}\)

Answer (Detailed Solution Below)

Option 3 : \(\rm \frac{a}{V^2_m}\)
Free
Seating Arrangement
3.9 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept:

  • According to the first law of thermodynamics, "the total energy in a system remains constant, although it may be converted from one form to another".
  • It can be represented mathematically as,

\(\Delta {\rm{U = }}\Delta {\rm{Q + dW}}\)

where, \(\Delta {\rm{Q }}\) is the amount of heat given or lost

\(\Delta {\rm{U }}\) is the change in internal energy

and \(dW\) is the amount of work done.

  • For an infinitesimal change,

\(d{\rm{U}} = Tds + ( - PdV)\)

\(dU = Tds - pdV\)

\({\left( {{{dU} \over {dV}}} \right)_T} = T{\left( {{{ds} \over {dV}}} \right)_T} - p \)

\({\left( {{{dU} \over {dV}}} \right)_T} = T{\left( {{{dP} \over {dT}}} \right)_V} - p \)

\(\left[ {From\;maxwells\;relation,\;{{\left( {{{ds} \over {dV}}} \right)}_T} = {{\left( {{{dP} \over {dT}}} \right)}_V}} \right] \)

  • For one mole of Vander Waals gas,

\(\left( {{\rm{P + }}{{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}} \right)\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right){\rm{ = RT}}\)

Explanation:

  • The equation for one mole of vander walls gas is given by,

\(\left( {{\rm{P + }}{{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}} \right)\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right){\rm{ = RT}}\)

\(P = {{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - {{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}\)

Thus from 1st law of thermodynamics, we get,

\({\left( {{{dU} \over {dV}}} \right)_T} = T{\left( {{{dP} \over {dT}}} \right)_V} - p\)

\( = T{\left[ {{d \over {dT}}\left( {{{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - {{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}} \right)} \right]_T} - P \)

\( = T{{\rm{R}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - P \)

\( = {{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - P\)

\( = {{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - \left( {{{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - {{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}} \right) \)

\( = {{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} - {{{\rm{RT}}} \over {\left( {{{\rm{V}}_{\rm{m}}}{\rm{ - b}}} \right)}} + {{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}} \)

\(= {{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}\)

Conclusion:

Hence, for a van der Waals gas, the partial derivative \(\left( {\frac{{\partial U}}{{\partial V}}}\right)\)T, is \( {{\rm{a}} \over {{{\rm{V}}_{\rm{m}}}^{\rm{2}}}}\) 

 
Latest CSIR NET Updates

Last updated on Jul 19, 2025

-> The CSIR NET June 2025 Exam Schedule has been released on its official website. The exam will be held on 28th July 2025.

-> CSIR NET City Intimation Slip 2025 has been released @csirnet.nta.ac.in.

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Chemical Thermodynamics Questions

Get Free Access Now
Hot Links: teen patti download apk teen patti vip teen patti 100 bonus