Vector Algebra MCQ Quiz - Objective Question with Answer for Vector Algebra - Download Free PDF

Last updated on May 14, 2025

Latest Vector Algebra MCQ Objective Questions

Vector Algebra Question 1:

Let 𝒂, 𝒃, 𝒄 be non-zero vectors. Then, match the expressions in List-I with the correct vector identities or values in List-II.

List – I List – II
(I) If the vectors 𝒂, 𝒃, 𝒄 form sides BC, CA, AB of triangle ΔABC, then (P) 𝒂·𝒃 = 𝒃·𝒄 = 𝒄·𝒂
(II) If 𝒂, 𝒃, 𝒄 form three adjacent sides of a regular tetrahedron, then (Q) 𝒂·𝒃 = 𝒃·𝒄 = 𝒄·𝒂 = 0
(III) If 𝒂 × 𝒃 = 𝒄 ; 𝒃 × 𝒄 = 𝒂, then (R) 𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂 = −3/2
(IV) If 𝒂, 𝒃, 𝒄 are unit vectors and 𝒂 + 𝒃 + 𝒄 = 0, then (S) 𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂 = −5/2
  (T) 𝒂 × 𝒃 = 𝒃 × 𝒄 = 𝒄 × 𝒂

Which is correct option? 

  1.  I-(T), II-(Q), III-(P), IV-(R)
  2.  I-(T), II-(P), III-(R), IV-(Q)
  3.  I-(T), II-(P), III-(Q), IV-(R)
  4.   I-(P), II-(T), III-(Q), IV-(R)

Answer (Detailed Solution Below)

Option 3 :  I-(T), II-(P), III-(Q), IV-(R)

Vector Algebra Question 1 Detailed Solution

Concept:

Vector Operations and Identities:

  • Dot Product: A scalar defined as 𝒂 · 𝒃 = |𝒂||𝒃|cosθ. It measures the projection of one vector on another.
  • Cross Product: A vector defined as 𝒂 × 𝒃 = |𝒂||𝒃|sinθ 𝒏̂, perpendicular to the plane of 𝒂 and 𝒃.
  • Vector Triple Product Identity: 𝒂 × (𝒃 × 𝒄) = (𝒂 · 𝒄)𝒃 − (𝒂 · 𝒃)𝒄
  • Unit Vector: A vector of magnitude 1. If |𝒂| = 1, then 𝒂 is a unit vector.
  • Regular Tetrahedron: A solid with 6 equal edges and 4 equilateral triangle faces. Angle between adjacent edges is 60°.

 

Calculation:

Given,

Statement A: 𝒂, 𝒃, 𝒄 form sides BC, CA, AB of ΔABC

⇒ 𝒂 + 𝒃 + 𝒄 = 0

⇒ Square both sides: (𝒂 + 𝒃 + 𝒄)² = 0

⇒ 𝒂² + 𝒃² + 𝒄² + 2(𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂) = 0

⇒ Let |𝒂| = |𝒃| = |𝒄| = 1

⇒ 3 + 2(𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂) = 0

⇒ 𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂 = −3/2

Statement B: 𝒂, 𝒃, 𝒄 are adjacent sides of regular tetrahedron

⇒ Angle between adjacent edges = 60°

⇒ 𝒂·𝒃 = 𝒃·𝒄 = 𝒄·𝒂 = cos 60° = 1/2

Statement C: 𝒂 × 𝒃 = 𝒄 ; 𝒃 × 𝒄 = 𝒂

⇒ Take LHS: 𝒂 × 𝒃 = 𝒄

⇒ Then 𝒃 × 𝒄 = 𝒂, and 𝒄 × 𝒂 = 𝒃 must also hold

⇒ Hence, 𝒂 × 𝒃 = 𝒃 × 𝒄 = 𝒄 × 𝒂

Statement D: 𝒂, 𝒃, 𝒄 are unit vectors & 𝒂 + 𝒃 + 𝒄 = 0

⇒ As before, square both sides:

⇒ 𝒂² + 𝒃² + 𝒄² + 2(𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂) = 0

⇒ 3 + 2(𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂) = 0

⇒ 𝒂·𝒃 + 𝒃·𝒄 + 𝒄·𝒂 = −3/2

∴ Correct matching is: I-(T), II-(P), III-(Q), IV-(R)

Vector Algebra Question 2:

Constant forces  = 2î - 5ĵ + 6k̂ and  = -î + 2ĵ - k̂ act on a particle. The work done when the particle is displaced from A whose position vector is 4î - 3ĵ - 2k̂, to B whose position vector is 6î + ĵ - 3k̂, is:

  1. 10 units.
  2. -15 units.
  3. -50 units.
  4. More than one of the above

Answer (Detailed Solution Below)

Option 2 : -15 units.

Vector Algebra Question 2 Detailed Solution

Concept:

If two points A and B have position vectors  and  respectively, then the vector .

For two vectors  and  at an angle θ to each other:

  • Dot Product is defined as: .
  • Resultant Vector is equal .
  • Work: The work (W) done by a force () in moving (displacing) an object along a vector  is given by: W = .

 

Calculation:

Let's say that the forces acting on the particle are  = 2î - 5ĵ + 6k̂ and  = -î + 2ĵ - k̂.

∴ The resulting force acting on the particle will be .

⇒  = (2î - 5ĵ + 6k̂) + (-î + 2ĵ - k̂)

⇒  = î - 3ĵ + 5k̂.

Since the particle is moved from the point 4î - 3ĵ - 2k̂ to the point 6î + ĵ - 3k̂, the displacement vector  will be:

= (6î + ĵ - 3k̂) - (4î - 3ĵ - 2k̂)

⇒ ​ = 2î + 4ĵ - k̂.

And finally, the work done W will be:

W =  = (î - 3ĵ + 5k̂).(2î + 4ĵ - k̂)

⇒ W = (1)(2) + (-3)(4) + (5)(-1)

⇒ W = 2 - 12 - 5 =

∴ -15 units.

Vector Algebra Question 3:

If and  are parallel vectors then b is equal to?

  1. 5
  2. 10
  3. 15
  4. More than one of the above

Answer (Detailed Solution Below)

Option 3 : 15

Vector Algebra Question 3 Detailed Solution

Concept:

If  are two vectors parallel to each other then  or 

Calculation:

Given:

  and  are parallel vectors,

Therefore, 

Equating the coefficient of 

⇒ 1 = 3λ, ∴ λ = 1/3            

⇒ -a = -6λ 

⇒ 5 = bλ                 .... (1)

Put the value of λ in equation (1), we get

5 = b × (1/3)

So, b = 15

Vector Algebra Question 4:

Find the magnitude of vector , where ?

  1. 40

Answer (Detailed Solution Below)

Option 1 :

Vector Algebra Question 4 Detailed Solution

Concept:

Magnitude of vector  then magnitude of vector is given by 

Calculation:

Given: Let where 

⇒ 

As we know that, if  then 

⇒ |

⇒  

Hence, option 1 is correct.

Vector Algebra Question 5:

If vectors  then a3 is ?

Where and  

  1. -1
  2. 1
  3. 0
  4. 2
  5. None of the above

Answer (Detailed Solution Below)

Option 2 : 1

Vector Algebra Question 5 Detailed Solution

Concept:

Equal Vectors
Two or more vectors are said to be equal when their magnitude is equal and also their direction is the same.

Calculation:

Given:  and  

 

∴ a3 = 1

Top Vector Algebra MCQ Objective Questions

If the vectors  are collinear if λ equals

  1. 3
  2. 4
  3. 5
  4. 6

Answer (Detailed Solution Below)

Option 1 : 3

Vector Algebra Question 6 Detailed Solution

Download Solution PDF

Concept:

Conditions of collinear vector:

  • Three points with position vectors  are collinear if and only if the vectors  and  are parallel. ⇔ 
  • If the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) be collinear then 

 

Solution:

We know that, If the points (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) be collinear then 

Given   are collinear

∴ 

⇒ 1 (-20 + 14) – (2) (-5λ + 21) + 3 (-2λ + 12) = 0

⇒ -6 + 10λ – 42 - 6λ + 36  = 0

⇒ 4λ = 12

∴ λ = 3

What is the value of p for which the vector p(2î - ĵ + 2k̂) is of 3 units length?

  1. 1
  2. 2
  3. 3
  4. 6

Answer (Detailed Solution Below)

Option 1 : 1

Vector Algebra Question 7 Detailed Solution

Download Solution PDF

Concept:

Let  then magnitude of the vector of a = 

Calculation:

Let  =  p(2î - ĵ + 2k̂)

Given, 

⇒ 

⇒ 

⇒ 3p = 3

∴ p = 1

Answer (Detailed Solution Below)

Option 2 : 0

Vector Algebra Question 8 Detailed Solution

Download Solution PDF

Concept:

Dot product of two vectors is defined as:

Cross/Vector product of two vectors is defined as:

where θ is the angle between 

Calculation:

To Find: Value of 

Here angle between them is 0°

If A =  and B =  , then what is the value of ?

  1. 6√2
  2. 7√2
  3. 8√2
  4. 9√2

Answer (Detailed Solution Below)

Option 4 : 9√2

Vector Algebra Question 9 Detailed Solution

Download Solution PDF

Concept:

If , then 

Calculation:

Given A =  and B = 

 = 

 = 

Now 

 = 9√2

 The point with position vectors 5î - 2ĵ,  8î - 3ĵ,  aî - 12ĵ are collinear if the value of a is 

  1. 31
  2. 51
  3. 42
  4. 35

Answer (Detailed Solution Below)

Option 4 : 35

Vector Algebra Question 10 Detailed Solution

Download Solution PDF

Concept:

Three or more points are collinearif slope of any two pairs of points is same.

The slope of a line passing through the distinct points (x1, y1) and (x2, y2) is 

Calculation:

Here, 

Let, A = (5, -2), B = (8, -3), C = (a, -12)

Now, slope of AB = Slope of BC = Slope of AC ....(∵ points are collinear)

 

⇒ a - 8= 27

⇒ a = 27 + 8 = 35

Hence, option (4) is correct.

If  and are collinear vectors, then what are the possible values of p and q respectively?

  1. 4, 1
  2. 1, 4

Answer (Detailed Solution Below)

Option 3 :

Vector Algebra Question 11 Detailed Solution

Download Solution PDF

Concept:

For two vectors  to be collinear,​  where λ is a scalar.

Calculation:

Given that, the vectors  &  are collinear.

Since two vectors  are collinear then  where λ is a scalar.

⇒ 

⇒ 

⇒ λp = 4,  λq = 1 and -2λ = -3

⇒  λ = 3/2 

So, by substituting λ = 3/2 in  λp = 4 and λq = 1, we get

⇒ (3/2)p = 4 and (3/2)q = 1

⇒ p = 8/3 and q  = 2/3

∴  is the correct answer.

The sine of the angle between vectors  and  is

Answer (Detailed Solution Below)

Option 2 :

Vector Algebra Question 12 Detailed Solution

Download Solution PDF

Concept:

If  then

Calculation:

Given:  and

If  and , find the angle between  and .

  1. π / 2
  2. π / 3
  3. π / 6
  4. π / 4

Answer (Detailed Solution Below)

Option 2 : π / 3

Vector Algebra Question 13 Detailed Solution

Download Solution PDF

Concept:

Let the angle between  and is 

 

Calculations:

consider, the angle between  and is 

Given, 

Squaring on both side, we get

⇒  = π / 3

Hence, If  and , then the angle between  and is π / 3

If and  are parallel vectors then b is equal to?

  1. 5
  2. 10
  3. 15
  4. 20

Answer (Detailed Solution Below)

Option 3 : 15

Vector Algebra Question 14 Detailed Solution

Download Solution PDF

Concept:

If  are two vectors parallel to each other then  or 

Calculation:

Given:

  and  are parallel vectors,

Therefore, 

Equating the coefficient of 

⇒ 1 = 3λ, ∴ λ = 1/3            

⇒ -a = -6λ 

⇒ 5 = bλ                 .... (1)

Put the value of λ in equation (1), we get

5 = b × (1/3)

So, b = 15

Let  and c = î - ĵ - k̂ be three vectors. A vector  in the plane of  and  whose projection on  is  is

  1. 3î - ĵ + 3k̂
  2. î - 3ĵ + 3k̂
  3. 5î - 2ĵ + 5k̂
  4. 2î - ĵ + 3k̂

Answer (Detailed Solution Below)

Option 1 : 3î - ĵ + 3k̂

Vector Algebra Question 15 Detailed Solution

Download Solution PDF

Calculation:

  and c = î - ĵ - k̂

Given:  vector  in the plane of  and  

Therefore, 

⇒ 

= (1 + λ)î + (1 - λ)ĵ  + (1 + λ)k̂                .... (1)

Projection of  on 

⇒  

⇒ 

⇒ -(1 - λ) = 1

∴ λ = 2

Now, put the value of λ in equation (1), we get 

 = 3î - ĵ + 3k̂

Hot Links: teen patti master golden india teen patti sweet teen patti gold apk all teen patti master teen patti customer care number