Exams
Test Series
Previous Year Papers
JEE Main Previous Year Question Paper JEE Advanced Previous Year Papers NEET Previous Year Question Paper CUET Previous Year Papers COMEDK UGET Previous Year Papers UP Polytechnic Previous Year Papers AP POLYCET Previous Year Papers TS POLYCET Previous Year Papers KEAM Previous Year Papers MHT CET Previous Year Papers WB JEE Previous Year Papers GUJCET Previous Year Papers ICAR AIEEA Previous Year Papers CUET PG Previous Year Papers JCECE Previous Year Papers Karnataka PGCET Previous Year Papers NEST Previous Year Papers KCET Previous Year Papers LPUNEST Previous Year Papers AMUEEE Previous Year Papers IISER IAT Previous Year Papers Bihar Diploma DECE-LE Previous Year Papers NPAT Previous Year Papers JMI Entrance Exam Previous Year Papers PGDBA Exam Previous Year Papers AP ECET Previous Year Papers PU CET Previous Year Papers GPAT Previous Year Papers CEED Previous Year Papers AIAPGET Previous Year Papers JKCET Previous Year Papers HPCET Previous Year Papers CG PAT Previous Year Papers SRMJEEE Previous Year Papers BCECE Previous Year Papers AGRICET Previous Year Papers TS PGECET Previous Year Papers MP PAT Previous Year Papers IIT JAM Previous Year Papers CMC Vellore Previous Year Papers ACET Previous Year Papers TS EAMCET Previous Year Papers NATA Previous Year Papers AIIMS MBBS Previous Year Papers BITSAT Previous Year Papers JEXPO Previous Year Papers HITSEEE Previous Year Papers AP EAPCET Previous Year Papers UCEED Previous Year Papers CG PET Previous Year Papers OUAT Previous Year Papers VITEEE Previous Year Papers
Syllabus
JEE Main Syllabus JEE Advanced Syllabus NEET Syllabus CUET Syllabus COMEDK UGET Syllabus UP Polytechnic JEECUP Syllabus AP POLYCET Syllabus TS POLYCET Syllabus KEAM Syllabus MHT CET Syllabus WB JEE Syllabus OJEE Syllabus ICAR AIEEA Syllabus CUET PG Syllabus NID Syllabus JCECE Syllabus Karnataka PGCET Syllabus NEST Syllabus KCET Syllabus UPESEAT EXAM Syllabus LPUNEST Syllabus PUBDET Syllabus AMUEEE Syllabus IISER IAT Syllabus NPAT Syllabus JIPMER Syllabus JMI Entrance Exam Syllabus AAU VET Syllabus PGDBA Exam Syllabus AP ECET Syllabus GCET Syllabus CEPT Syllabus PU CET Syllabus GPAT Syllabus CEED Syllabus AIAPGET Syllabus JKCET Syllabus HPCET Syllabus CG PAT Syllabus BCECE Syllabus AGRICET Syllabus TS PGECET Syllabus BEEE Syllabus MP PAT Syllabus MCAER PG CET Syllabus VITMEE Syllabus IIT JAM Syllabus CMC Vellore Syllabus AIMA UGAT Syllabus AIEED Syllabus ACET Syllabus TS EAMCET Syllabus PGIMER Exam Syllabus NATA Syllabus AFMC Syllabus AIIMS MBBS Syllabus BITSAT Syllabus BVP CET Syllabus JEXPO Syllabus HITSEEE Syllabus AP EAPCET Syllabus GITAM GAT Syllabus UPCATET Syllabus UCEED Syllabus CG PET Syllabus OUAT Syllabus IEMJEE Syllabus VITEEE Syllabus SEED Syllabus MU OET Syllabus
Books
Cut Off
JEE Main Cut Off JEE Advanced Cut Off NEET Cut Off CUET Cut Off COMEDK UGET Cut Off UP Polytechnic JEECUP Cut Off AP POLYCET Cut Off TNEA Cut Off TS POLYCET Cut Off KEAM Cut Off MHT CET Cut Off WB JEE Cut Off ICAR AIEEA Cut Off CUET PG Cut Off NID Cut Off JCECE Cut Off Karnataka PGCET Cut Off NEST Cut Off KCET Cut Off UPESEAT EXAM Cut Off AMUEEE Cut Off IISER IAT Cut Off Bihar Diploma DECE-LE Cut Off JIPMER Cut Off JMI Entrance Exam Cut Off PGDBA Exam Cut Off AP ECET Cut Off GCET Cut Off CEPT Cut Off PU CET Cut Off CEED Cut Off AIAPGET Cut Off JKCET Cut Off HPCET Cut Off CG PAT Cut Off SRMJEEE Cut Off TS PGECET Cut Off BEEE Cut Off MP PAT Cut Off VITMEE Cut Off IIT JAM Cut Off CMC Vellore Cut Off ACET Cut Off TS EAMCET Cut Off PGIMER Exam Cut Off NATA Cut Off AFMC Cut Off AIIMS MBBS Cut Off BITSAT Cut Off BVP CET Cut Off JEXPO Cut Off HITSEEE Cut Off AP EAPCET Cut Off GITAM GAT Cut Off UCEED Cut Off CG PET Cut Off OUAT Cut Off VITEEE Cut Off MU OET Cut Off
Latest Updates
Eligibility
JEE Main Eligibility JEE Advanced Eligibility NEET Eligibility CUET Eligibility COMEDK UGET Eligibility UP Polytechnic JEECUP Eligibility TNEA Eligibility TS POLYCET Eligibility KEAM Eligibility MHT CET Eligibility WB JEE Eligibility OJEE Eligibility ICAR AIEEA Eligibility CUET PG Eligibility NID Eligibility JCECE Eligibility Karnataka PGCET Eligibility NEST Eligibility KCET Eligibility LPUNEST Eligibility PUBDET Eligibility AMUEEE Eligibility IISER IAT Eligibility Bihar Diploma DECE-LE Eligibility NPAT Eligibility JIPMER Eligibility JMI Entrance Exam Eligibility AAU VET Eligibility PGDBA Exam Eligibility AP ECET Eligibility GCET Eligibility CEPT Eligibility PU CET Eligibility GPAT Eligibility CEED Eligibility AIAPGET Eligibility JKCET Eligibility HPCET Eligibility CG PAT Eligibility SRMJEEE Eligibility BCECE Eligibility AGRICET Eligibility TS PGECET Eligibility MP PAT Eligibility MCAER PG CET Eligibility VITMEE Eligibility IIT JAM Eligibility CMC Vellore Eligibility AIMA UGAT Eligibility AIEED Eligibility ACET Eligibility PGIMER Exam Eligibility CENTAC Eligibility NATA Eligibility AFMC Eligibility AIIMS MBBS Eligibility BITSAT Eligibility JEXPO Eligibility HITSEEE Eligibility AP EAPCET Eligibility GITAM GAT Eligibility UPCATET Eligibility UCEED Eligibility CG PET Eligibility OUAT Eligibility IEMJEE Eligibility SEED Eligibility MU OET Eligibility

Understanding Electron Affinity: Definition, Factors & Periodic Trends

Last Updated on Feb 20, 2025
Download As PDF
IMPORTANT LINKS
Classification of Elements and Periodicity in Properties
What is Periodicity Periodic Classification of Elements Electron Gain Enthalpy of Elements in Modern Periodic Table Electronegativity of Elements in Modern Periodic Table Electronic Configuration in Periods and Groups First 20 Elements of the Periodic Table Modern Periodic Law Modern Periodic Table Newland’s Law of Octaves and Dobereiner’s Triads Nomenclature of Elements with Atomic Number Greater than 100 Anomalous Periodic Properties Periodic Properties of Element Isotopes of Elements Ionic Radius Ionization Energy Trend History of Periodic Table Electron Affinity How to memorize Periodic Table Trends of Chemical Reactivity in Periodic Table Valency Chart Formation of Groups Ionization Energy Electronegativity Chart Ionisation Enthalpy of Transition Elements Ionization Enthalpy Atomic Radius Trends in Periodic Table Electronegativity
Some Basic Concepts of Chemistry Structure of Atom Chemical Bonding and Molecular Structure Thermodynamics Equilibrium Redox Reactions Organic Chemistry Hydrocarbons Solutions Electrochemistry Chemical Kinetics D and F Block Elements Coordination Compounds Haloalkanes and Haloarenes Alcohols Phenols and Ethers Aldehydes Ketones and Carboxylic Acids Amines Biomolecules The Solid State Surface Chemistry P Block Elements Polymers Chemistry in Everyday Life States of Matter Hydrogen S Block Elements Environmental Chemistry

Understanding Electron Affinity

The term 'Electron Affinity' refers to

The energy change that occurs when an electron is added to a neutral atom, forming a negative ion.

Electron affinity represents the potential energy change of an atom when an electron is attached to a neutral gaseous atom to create a negative ion. Thus, the more negative the electron affinity, the more favorable the electron addition process becomes. However, not all elements form stable negative ions, so in such cases, the electron affinity could be zero or even positive.

Crack BSF Head Constable/ASI with India’s Best Teachers & Coachings

Get 6 Months SuperCoaching @ just

₹1999 ₹499

Your Total Savings ₹1500
Purchase Now

Periodic Trends

Electron affinity is the energy released when an electron is added to a neutral atom to form a negative ion. Measuring electron affinities can be complex.

  • Electron affinity tends to increase from left to right across a period due to increased nuclear attraction.
  • As we move down a group, the electron affinity usually decreases because the electron is being added further away from the nucleus. The electron becomes less tightly bound and can be easily removed.

As we move from left to right in a period, the atomic size decreases due to an increase in nuclear force, hence the electron gain enthalpy increases. Conversely, while moving down a group in the periodic table, the atomic size increases, causing a decrease in the value of electron gain enthalpy .

Test Series
236k Students
Current Affairs (CA) 2025 Mega Pack for SSC/Railways/State Exam Mock Test
431 TOTAL TESTS | 4 Free Tests
  • 168 Topic Specific
  • 52 Weekly Revision
  • 24 Monthly Digest
  • 12 Need-to-Know NEWS
  • 96 State Specific
  • 10 Previous Year Questions
  • 17 Revision 2024
  • 52 Advanced Current Affairs

Get Started

Factors Affecting Electron Affinity

Here are some key factors that can affect electron affinity.

Electron Affinity of Halogens

The Ionization potential is the energy required to remove an electron from a gaseous atom. When an extra electron is added to the atom, energy is released. This energy release when a neutral atom in its gaseous state accepts an electron and transforms into a negatively charged ion is known as electron affinity.

Here, X represents any element in the gaseous state and E.A. stands for the electron affinity. The electron affinity is usually represented in electron volts per atom or kilojoule per mole. For instance,

Hence, the electron affinity of chlorine is – 349 KJ/mol.

The energy release when the first electron is added to an atom, forming a monovalent anion, is known as the first electron affinity. However, adding another electron to this anion requires energy due to electron repulsion, making the second and further affinities positive in nature.

More Articles for Chemistry

Frequently Asked Questions

Electron Affinity increases across a period from left to right because of increasing effective nuclear charge and decreasing size of atoms. Electron Affinity decreases down the group due to increased size of atoms

When an electron is added to a neutral atom, energy is released and Electron Affinity is generally exothermic. Due to electronic repulsions, the second Electron Affinity can be positive

Electron Affinity was a concept that was discovered in 1901 in view of the discovery of electron negativity by Linus Carl Pauling. Electron Affinity is the amount of change in energy when an electron in a gaseous state is applied to a neutral atom.

The enthalpy of electron gain for halogens is highly negative because by accepting an extra electron they can acquire the nearest stable noble gas configuration. Noble gases have significant positive enthalpy in the gain of electrons.

The halogens’ high electron affinities are due to their small size, high effective nuclear charge and an almost full outer shell of electrons. When an electron is added to halogens with very high electron affinity, high energy is released

Report An Error